
Simulink® Verification and Validation™ 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Verification and Validation™ User’s Guide

© COPYRIGHT 2004–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.0.2 (Release 14SP2)
April 2005 Second printing Revised for Version 1.1 (Web release)
September 2005 Online only Revised for Version 1.1.1 (Release 14SP3)
March 2006 Online only Revised for Version 1.1.2 (Release 2006a)
September 2006 Online only Revised for Version 2.0 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Online only Revised for Version 2.2 (Release 2007b)
March 2008 Online only Revised for Version 2.3 (Release 2008a)
October 2008 Online only Revised for Version 2.4 (Release 2008b)
March 2009 Online only Revised for Version 2.5 (Release 2009a)
September 2009 Online only Revised for Version 2.6 (Release 2009b)

Contents

Getting Started

1
Product Overview . 1-2

System Requirements . 1-3
Operating System Requirements . 1-3
Product Requirements . 1-3

Organization of This User’s Guide 1-5

Managing Model Requirements

2
About the Requirements Management Interface 2-2

About Requirements Documents . 2-3
Requirements Document Types . 2-3
Locations Within Requirements Documents 2-3

Linking a Simulink Object to a Location in a
Requirements Document . 2-6
What Is Selection-Based Linking? . 2-6
Creating a Requirements Document in Microsoft Word . . . 2-6
Linking from a Simulink Object to a Selected Item in a
Requirements Document . 2-7

Customizing Selection-Based Linking 2-8
Linking from a Simulink Object to a Specified Location in a
Requirements Document . 2-9

Creating a Requirements Document in a Microsoft® Excel
Spreadsheet . 2-12

Adding Requirement Links to Multiple Objects
Simultaneously . 2-12

v

Linking a Signal Builder Block to a Requirement 2-13
Resolving the Document Path . 2-15

Viewing Simulink Objects That Have Requirements
Links . 2-17
Highlighting Objects with Requirements in the Model
Editor . 2-17

Highlighting Objects with Linked Requirements from
Model Explorer . 2-18

Deleting Requirement Links from Simulink Objects . . 2-19
Deleting a Single Link from a Simulink Object 2-19
Deleting All Links from a Simulink Object 2-19
Deleting Links from Multiple Simulink Objects 2-19

Creating Requirements in Linked Libraries 2-21

Creating a Requirements Report . 2-22
Creating the Default Requirements Report 2-22
Customizing a Requirements Report 2-26

Navigating from Requirements Documents to Simulink
Objects . 2-30
Configuring the RMI to Insert Navigation Controls 2-30
Enabling ActiveX Controls . 2-30
Creating Navigation Controls in Requirements
Documents . 2-31

Troubleshooting Simulink Navigation Controls in Microsoft
Office 2007 . 2-32

Linking to Custom Types of Requirements
Documents . 2-40
Built-In Link Types . 2-40
Why Create a Custom Link Type? . 2-40
Custom Link Type Registration . 2-41
Link Properties . 2-42
Link Type Properties . 2-42
Creating a Custom Link Requirement Type 2-44
Navigating to Simulink Objects from External
Documents . 2-53

vi Contents

Using the System Requirements Block in a Model 2-56
About the System Requirements Block 2-56
Adding the System Requirements Block 2-56
Renaming the System Requirements Block 2-57

Including Requirements Information with Generated
Code . 2-59

Managing Requirements with DOORS Software

3
Why Use DOORS Requirements with Simulink
Objects? . 3-2

Configuring the Requirements Management Interface
for DOORS Software . 3-4
Before You Begin . 3-4
Installing DOORS Software . 3-4
Manually Installing Additional Files for DOORS
Software . 3-4

Upgrading DOORS Software . 3-5

Linking Simulink Objects to DOORS Requirements . . . 3-7
Creating DOORS Requirements . 3-7
Creating One-Way Links from Simulink Objects to DOORS
Requirements . 3-8

Navigating from a Simulink Object to a DOORS
Requirement . 3-10

Synchronizing a Simulink Model to a DOORS Surrogate
Module . 3-12
What Is a Surrogate Module? . 3-12
What Is Synchronization? . 3-12
Advantages of Synchronization . 3-14
Synchronizing a Simulink Model to Create a Surrogate
Module . 3-14

Customizing the Synchronization . 3-16
Updating the Surrogate Module to Reflect Model
Changes . 3-22

vii

Navigating Using the Surrogate Module 3-25

Viewing Simulink Objects with Requirements 3-28
Viewing Objects with Requirements in the Model Editor . . 3-28
Viewing Objects with Requirements in the Model
Explorer . 3-28

Creating Requirements Reports . 3-30
About Requirements Reports . 3-30
Creating a Default Requirements Report for a Model 3-30
Customizing a Requirements Report with Links to DOORS
Requirements . 3-31

Creating Two-Way Links Between Requirements and
Simulink Objects . 3-35
Creating Two-Way Links . 3-35
Navigating Two-Way Links . 3-36

Managing Model Verification Blocks

4
Using Model Verification Blocks . 4-2

Using the Verification Manager . 4-7
What Is the Verification Manager? 4-7
Opening the Verification Manager . 4-7
Enabling and Disabling Model Verification Blocks with the
Verification Manager . 4-15

Using Enabling and Disabling Tools in the Verification
Manager . 4-20

Managing Verification Requirements 4-24

viii Contents

Using Model Coverage

5
Introduction to Model Coverage . 5-2
What Is Model Coverage? . 5-2
How Model Coverage Works . 5-2
Simulink Optimizations and Model Coverage 5-2
Types of Model Coverage . 5-3
Blocks That Receive Model Coverage 5-8

Analyzing Model Coverage . 5-11
Model Coverage Analysis Workflow 5-11
Creating and Running Test Cases . 5-11

Model Coverage Reporting Options 5-16
Coverage Settings Dialog Box . 5-16
Coverage Tab . 5-18
Results Tab . 5-21
Report Tab . 5-23
Options Tab . 5-27

Understanding Model Coverage Reports 5-30
Types of Coverage Reports . 5-30
Model Coverage Reports . 5-31
Model Summary Reports . 5-61
Model Reference Coverage Reports 5-62
External M-File Coverage Reports . 5-62
Subsystem Coverage Reports . 5-66

Colored Simulink Diagram Coverage Display 5-69
How Model Coverage Highlighting Works 5-69
Enabling the Colored Diagram Display 5-69
Displaying Model Coverage with Model Coloring 5-70
Accessing Coverage Information for Colored Blocks 5-72

Using Model Coverage Commands 5-74
About Model Coverage Commands 5-74
Creating Tests with cvtest . 5-74
Running Tests with cvsim . 5-76
Producing HTML Reports with cvhtml 5-77
Saving Test Runs to a File with cvsave 5-78

ix

Loading Stored Coverage Test Results with cvload 5-79
Coverage Script Example . 5-79

Using Model Coverage Commands for Referenced
Models . 5-81
Introduction . 5-81
Creating a Test Group with cv.cvtestgroup 5-84
Running Tests with cvsimref . 5-84
Extracting Results from cv.cvdatagroup 5-85

Model Coverage for Embedded MATLAB Function
Blocks . 5-87
Types of Model Coverage in Embedded MATLAB Function
Blocks . 5-87

Creating a Model with Embedded MATLAB Function Block
Decisions . 5-88

Understanding Embedded MATLAB Function Block Model
Coverage . 5-92

Customizing the Model Advisor

Overview of the Model Advisor

6
Why Use and Customize the Model Advisor? 6-2
About the Model Advisor . 6-2
Customizing the Model Advisor . 6-2

Customizing and Using the Model Advisor Workflow . . 6-4

Before Customizing the Model Advisor 6-5

x Contents

Authoring Custom Checks

7
Authoring Checks Workflow . 7-2

Customization File Overview . 7-3

Register Checks and Process Callbacks 7-6
Create sl_customization Function . 7-6
Registering Checks and Process Callbacks 7-6
Defining Startup and Post-Execution Actions Using Process
Callback Functions . 7-8

Defining Custom Checks . 7-11
About Custom Checks . 7-11
Contents of Check Definitions . 7-11
Displaying and Enabling Checks . 7-13
Defining Where Custom Checks Appear 7-14
Model Advisor Code Example: Check Definition
Function . 7-15

Defining Check Input Parameters . 7-16
Defining Model Advisor Result Explorer Views 7-18
Defining Check Actions . 7-19

Creating Callback Functions and Results 7-22
About Callback Functions . 7-22
Common Utilities for Authoring Checks 7-23
Simple Check Callback Function . 7-23
Detailed Check Callback Function . 7-31
Check Callback Function with Hyperlinked Results 7-33
Action Callback Function . 7-37
Formatting Model Advisor Results 7-38

Creating Custom Configurations by Organizing
Checks and Folders

8
Overview of Creating Custom Configurations 8-2

xi

About Creating Custom Configurations 8-2
Creating Custom Configurations Workflow 8-2
Using the Model Advisor Configuration Editor Versus
Customization File . 8-3

Organizing Checks and Folders Using the Model
Advisor Configuration Editor . 8-4
Overview of the Model Advisor Configuration Editor 8-4
Starting the Model Advisor Configuration Editor 8-9
How To Organize Checks and Folders Using the Model
Advisor Configuration Editor . 8-10

Organizing Checks and Folders Within a Customization
File . 8-12
Customization File Overview . 8-12
Register Tasks and Folders . 8-13
Defining Custom Tasks . 8-15
Defining Custom Folders . 8-18
Demo and Code Example . 8-20

Verifying and Using Custom Configurations 8-22
Updating the Environment to Include Your sl_customization
File . 8-22

Verifying Custom Configurations . 8-22

Deploying Custom Configurations

9
Overview of Deploying Custom Configurations 9-2
About Deploying Custom Configurations 9-2
Deploying Custom Configurations Workflow 9-2

How to Deploy Custom Configurations 9-3

Loading and Setting the Default Configuration 9-4

xii Contents

Function Reference

10
Requirements Management Interface 10-2

Model Coverage . 10-3

Model Advisor Customization API 10-5

Model Advisor Result Template API 10-7

Model Advisor Formatting API . 10-8

Class Reference

11
Model Coverage . 11-2

Model Advisor Customization API 11-3

Model Advisor Result Template API 11-4

Model Advisor Formatting API . 11-5

xiii

Alphabetical List

12

Block Reference

13

Model Advisor Checks

14
Simulink® Verification and Validation Checks 14-2
Simulink® Verification and Validation Checks Overview . . 14-2
Modeling Standards Checks Overview 14-3

DO-178B Checks . 14-4
DO-178B Checks Overview . 14-5
Check safety-related optimization settings 14-6
Check safety-related diagnostic settings for solvers 14-10
Check safety-related diagnostic settings for sample time . . 14-13
Check safety-related diagnostic settings for signal data . . 14-16
Check safety-related diagnostic settings for parameters . . 14-19
Check safety-related diagnostic settings for data used for
debugging . 14-22

Check safety-related diagnostic settings for data store
memory . 14-24

Check safety-related diagnostic settings for type
conversions . 14-26

Check safety-related diagnostic settings for signal
connectivity . 14-28

Check safety-related diagnostic settings for bus
connectivity . 14-30

Check safety-related diagnostic settings that apply to
function-call connectivity . 14-32

Check safety-related diagnostic settings for
compatibility . 14-34

Check safety-related diagnostic settings for model
initialization . 14-36

xiv Contents

Check safety-related diagnostic settings for model
referencing . 14-38

Check safety-related model referencing settings 14-41
Check safety-related code generation settings 14-43
Check safety-related diagnostic settings for saving 14-50
Check for model objects that do not link to requirements . . 14-52
Check for proper usage of Math blocks 14-53
Check for proper usage of For Iterator blocks 14-54
Check for proper usage of While Iterator blocks 14-55
Display model version information 14-57
Check for proper usage of blocks that compute absolute
values . 14-58

Check for proper usage of Relational Operator blocks 14-60

IEC 61508 Checks . 14-62
IEC 61508 Checks Overview . 14-62
Display model metrics and complexity report 14-64
Check for unconnected objects . 14-65
Check for fully defined interface . 14-66
Check for questionable constructs . 14-68
Check usage of Stateflow constructs 14-70
Check for model objects that do not link to requirements . . 14-73
Display configuration management data 14-74
Check usage of Simulink constructs 14-75

MathWorks Automotive Advisory Board Checks 14-79
MathWorks Automotive Advisory Board Checks
Overview . 14-81

Check for difference in font and font sizes 14-82
Check transition orientations in flow charts 14-84
Check for display of nondefault block attributes 14-85
Check for proper labeling on signal lines 14-86
Check for propagated labels on signal lines 14-88
Check default transition placement in Stateflow charts . . 14-90
Check setting Stateflow graphical function return value . . 14-91
Check for blocks not using one-based indexing 14-92
Check for invalid file names . 14-94
Check for invalid model directory names 14-96
Check for blocks that are not discrete 14-97
Check for prohibited sink blocks . 14-98
Check for invalid port positioning and configuration 14-99
Check for mismatches between names of ports and
corresponding signals . 14-101

xv

Check whether block names do not appear below blocks . . 14-102
Check for systems that mix primitive blocks and
subsystems . 14-103

Check whether model has unconnected block input ports,
output ports, or signal lines . 14-105

Check for improperly positioned Trigger and Enable
blocks . 14-106

Check whether annotations have drop shadows 14-107
Check whether tunable parameters specify expressions,
data type conversions, or indexing operations 14-108

Check whether Stateflow events are defined at the chart
level or below . 14-110

Check whether Stateflow data objects with local scope are
defined at the chart level or below 14-111

Check interface signals and parameters 14-112
Check for exclusive states, default states, and substate
validity . 14-113

Check optimization parameters for Boolean data types . . . 14-115
Check model diagnostic settings . 14-116
Check the display attributes of block names 14-119
Check icon display attributes for port blocks 14-120
Check whether subsystem block names include invalid
characters . 14-121

Check whether Inport and Outport block names include
invalid characters . 14-123

Check whether signal line names include invalid
characters . 14-125

Check whether block names include invalid characters . . . 14-127
Check Trigger and Enable block port names 14-129
Check for Simulink diagrams that have nonstandard
appearance attributes . 14-130

Check visibility of port block names 14-133
Check for direction of subsystem blocks 14-135
Check for proper position of constants used in Relational
Operator blocks . 14-136

Check for entry format in state blocks 14-137
Check for use of tunable parameters in Stateflow 14-139
Check for proper use of Switch blocks 14-140
Check for proper use of signal buses and Mux block
usage . 14-141

Check for mismatches between Stateflow ports and
associated signal names . 14-143

Check for proper scope of From and Goto blocks 14-144

xvi Contents

Requirements Consistency Checks 14-145
Identify requirement links with missing documents 14-146
Identify requirement links that specify invalid locations
within documents . 14-147

Identify selection-based links having descriptions that do
not match their requirements document text 14-148

Identify requirement links with inconsistent path types and
preferences . 14-150

Examples

A
Requirements Management Interface A-2

Requirements Management Interface (DOORS
Version) . A-2

Verification Manager . A-3

Model Coverage . A-3

Model Advisor Check . A-4

Model Advisor Organization . A-4

Index

xvii

xviii Contents

1

Getting Started

The Simulink® Verification and Validation™ software uses component tools
that contribute to the work of certifying the correct design, implementation,
and testing of Simulink® models. Use the following topics to become familiar
with the Simulink Verification and Validation software.

• “Product Overview” on page 1-2

• “System Requirements” on page 1-3

• “Organization of This User’s Guide” on page 1-5

1 Getting Started

Product Overview
The Simulink Verification and Validation software is a Simulink product that
helps you do the following:

• Associate design requirements that you manage using external applications
with Simulink model objects that implement the requirements

• Verify proper function of the model by monitoring model signals during
extensive testing

• Validate the model, making sure that all possible model decisions are
taken through testing.

• Customize the Model Advisor to analyze a model for settings that result in
inaccuracies or inefficiencies.

In short, the elements of the Simulink Verification and Validation software
give you confidence in the behavior of your Simulink models.

1-2

System Requirements

System Requirements

In this section...

“Operating System Requirements” on page 1-3

“Product Requirements” on page 1-3

Operating System Requirements
The Simulink Verification and Validation software works with the following
operating systems:

• Microsoft® Windows® XP and Windows Vista™

• UNIX® systems (Requirements linking to HTML and TXT documents only)

Product Requirements
The Simulink Verification and Validation software requires the following
MathWorks™ products:

• MATLAB®

• Simulink

If you want to use the Requirements Management Interface with Stateflow®

charts, the Simulink Verification and Validation software requires the
following MathWorks product:

• Stateflow

The Requirements Management Interface in the Simulink Verification and
Validation software allows you to associate requirements with Simulink
models and Stateflow charts. The software supports the following applications
for documenting requirements:

• Microsoft Word 2000 or later

• Microsoft® Excel® 98 or later

• IBM® Rational® DOORS® 6.0 or later

1-3

1 Getting Started

• Adobe® PDF

1-4

Organization of This User’s Guide

Organization of This User’s Guide
The component tools of the Simulink Verification and Validation software are
organized on the basis of workflow that you follow in certifying the correct
and complete behavior of your models. This workflow is described in the
following steps:

1 Establish performance requirements for the model and link them with
model elements using the Requirements Management Interface, which is
described in the following chapters:

• Chapter 2, “Managing Model Requirements” — Instructions for using
the Requirements Management Interface with requirements in HTML,
PDF, TXT, Microsoft Word, and Microsoft Excel documents. Use this
feature to associate requirements with objects in Simulink models and
Stateflow charts.

• Chapter 3, “Managing Requirements with DOORS Software” —
Instructions for using the DOORS software with the Requirements
Management Interface. Use this feature to associate Simulink models
and Stateflow charts with requirements in the DOORS software.

2 Verify proper performance of the model by monitoring model signals during
extensive testing with model verification blocks using the Verification
Manager, which is described in the following chapter:

• Chapter 4, “Managing Model Verification Blocks” — Shows you how
to use verification blocks individually in Simulink models and how to
manage them as a group for testing.

3 Validate the model by making sure that all possible model decisions are
taken through testing, by using the Model Coverage tool, which is described
in the following chapter:

• Chapter 5, “Using Model Coverage” — Shows you how to generate and
interpret model coverage reports and displays for validating model
decisions.

4 Customize the Model Advisor to analyze your model for conditions and
configuration settings that result in inaccurate or inefficient simulation
or code generation. You can write custom checks, tasks, and callback
functions, as described in the following chapter:

1-5

1 Getting Started

• Customizing the Model Advisor on page 1 — Shows you how to define
custom checks and tasks, write callback functions, and register
customizations for the Model Advisor.

The last portion of the User’s Guide is comprised of function and block
reference chapters:

• Chapter 10, “Function Reference” — Provides a categorical list of functions
used in executing and managing model coverage tests and reports from the
MATLAB prompt. Automate your model coverage tests with scripts of
MATLAB commands calling these functions.

• Chapter 12, “Alphabetical List” — Provides an alphabetical reference of
functions used in executing and managing model coverage tests and reports
from the MATLAB prompt.

• Chapter 13, “Block Reference” — Provides reference information for the
Simulink Verification and Validation library, which currently contains
only one block, System Requirements. This block lets you list all the
requirements for a model or subsystem on its Simulink diagram.

1-6

2

Managing Model
Requirements

• “About the Requirements Management Interface” on page 2-2

• “About Requirements Documents” on page 2-3

• “Linking a Simulink Object to a Location in a Requirements Document”
on page 2-6

• “Viewing Simulink Objects That Have Requirements Links” on page 2-17

• “Deleting Requirement Links from Simulink Objects” on page 2-19

• “Creating Requirements in Linked Libraries” on page 2-21

• “Creating a Requirements Report” on page 2-22

• “Navigating from Requirements Documents to Simulink Objects” on page
2-30

• “Linking to Custom Types of Requirements Documents” on page 2-40

• “Using the System Requirements Block in a Model” on page 2-56

• “Including Requirements Information with Generated Code” on page 2-59

2 Managing Model Requirements

About the Requirements Management Interface
The Requirements Management Interface (RMI) allows you to link
requirements with Simulink and Stateflow objects. Requirements links have
the following attributes:

• A description of up to 255 characters.

• A requirements document path name, such as a Microsoft Word file. (The
RMI supports several built-in document formats and also allows you to
register custom types of requirements documents.)

• A link to a location inside the requirements document, such as bookmark,
anchor, line number, cell range, and so on.

Use the RMI to:

• Associate requirements with:

- Simulink objects, such as subsystems, blocks, and signals

- Stateflow charts, states, transitions, boxes, and functions

• Navigate from a Simulink or Stateflow object to requirements information.

• Navigate from an embedded link in a requirements document to the
corresponding Simulink or Stateflow object.

• Highlight Simulink or Stateflow objects that have requirements associated
with them.

• Create reports for your Simulink model that show which objects have links
to which requirements.

Note You can add requirements to a Model or Subsystem block linked from
a Simulink library, but not to its contents. You cannot modify blocks in a
Simulink library.

2-2

About Requirements Documents

About Requirements Documents

In this section...

“Requirements Document Types” on page 2-3

“Locations Within Requirements Documents” on page 2-3

Requirements Document Types
The RMI supports the following types of requirements documents:

• Text

• HTML

• PDF

• Microsoft Word 2007 and earlier

• Microsoft Excel 2007 and earlier

• An IBM Rational DOORS database — see “Linking a Simulink Object to a
Location in a Requirements Document” on page 2-6

You can also link to requirements in custom types of documents — see
“Linking to Custom Types of Requirements Documents” on page 2-40

Locations Within Requirements Documents
Depending on the requirements document type, you can link to specific
locations within a document using the following options in the Requirements
dialog box.

2-3

2 Managing Model Requirements

Requirements
Document
Type

Location Options

Text • Search text — Type a string in the Location text
field. The RMI links to the first occurrence of the text
string within the document. This search is not case
sensitive.

• Line number — Type a line number in the Location
text field. The RMI links to the specified line.

HTML You can link only to a named anchor.

For example, in your HTML requirements document, if
you define the anchor

 ...contents...

in the Location text field, enter valve_timing or choose
the anchor name from the document index.

Microsoft
Word

• Search text — Type a string in the Location text
field. The RMI links to the first occurrence of the text
string within the document. This search is not case
sensitive.

• Named item — Type the bookmark name in the
Location text field, or select the name from the
document index. The RMI links to the location of that
bookmark in the document.

• Page/item number — Type a page number in the
Location text field. The RMI links to the top of that
page.

2-4

About Requirements Documents

Requirements
Document
Type

Location Options

Microsoft
Excel

• Search text — Type a string in the Location text
field. The RMI links to the first occurrence of the text
string within the workbook. This search is not case
sensitive.

• Named item — Type the name in the Location text
field. The RMI links to that named item within the
workbook.

• Sheet range — Type a location in a workbook in the
Location text field:

- Cell number (A1, C13)

- Range of cells (C5:D7)

- Range of cells on another worksheet (Sheet1!A1:B4)

The RMI links to the specified cell or cells.

PDF • Named item — Type the bookmark name in the
Location field, or select the bookmark name in the
document index. The RMI links to the location of that
bookmark in the document.

• Page/item number — Type a page number in the
Location text field. The RMI links to the top of the
page.

Web browser
URL

The RMI can link to a URL location. Type the URL string
in the Document text field. When you click the link, the
document opens in a Web browser. Similarly to HTML
document types, you can explicitly specify the anchor in
the Location text field.

2-5

2 Managing Model Requirements

Linking a Simulink Object to a Location in a Requirements
Document

In this section...

“What Is Selection-Based Linking?” on page 2-6

“Creating a Requirements Document in Microsoft Word” on page 2-6

“Linking from a Simulink Object to a Selected Item in a Requirements
Document” on page 2-7

“Customizing Selection-Based Linking” on page 2-8

“Linking from a Simulink Object to a Specified Location in a Requirements
Document” on page 2-9

“Creating a Requirements Document in a Microsoft® Excel Spreadsheet”
on page 2-12

“Adding Requirement Links to Multiple Objects Simultaneously” on page
2-12

“Linking a Signal Builder Block to a Requirement” on page 2-13

“Resolving the Document Path” on page 2-15

What Is Selection-Based Linking?
Selection-based linking is linking a Simulink object to a selected item in a
requirements document. Using selection-based linking, the RMI creates a
link from the object to the requirement text.

The following tutorial takes you through the steps to link a block in a
Simulink model to text in a Microsoft Word document.

Creating a Requirements Document in Microsoft
Word
For this tutorial, create and save a Microsoft Word 2007 document,
requirements.docx, with the content shown in the following graphic. Style
the header lines “Transmission Requirements” and “Engine Requirements” as
Heading 1.

2-6

Linking a Simulink® Object to a Location in a Requirements Document

Note The requirements document for this exercise is in Microsoft Word 2007
format. If you do not have Microsoft Word 2007, you can use earlier versions
of the Microsoft Word software.

Linking from a Simulink Object to a Selected Item in
a Requirements Document
Open a Simulink demo model. Create a link from a block in the model to the
text you selected in the requirements document:

1 At the MATLAB prompt, type sf_car to open the model.

2 In requirements.docx, select the paragraph under “Engine Requirements”.

3 Right-click the Engine block and select Add link to Word selection.

4 Verify the link from the Engine block by right-clicking the Engine block
and selecting Requirements.

A shortened version of the requirements text appears at the top of the
context menu.

2-7

2 Managing Model Requirements

5 Click the requirement text to navigate to that location in the requirements
document.

6 Save the model as sf_car_linking.

7 The RMI inserts a bookmark into the requirements document when
creating the link. Save the requirements document.

Customizing Selection-Based Linking
You can customize selection-based linking. From the Model Editor window,
select Tools > Requirements > Settings. On the Selection-based linking
tab, the following options are available.

Selection-Based Linking Option Description

Document types Specify the document types for which
you want selection-based linking to
be available.

Document file reference Specify how to store the
requirements document. Valid
options are:

• absolute path

• path relative to current
directory

• path relative to model
directory

• filename only (on MATLAB
path)

For more information, see “Resolving
the Document Path” on page 2-15.

2-8

Linking a Simulink® Object to a Location in a Requirements Document

Selection-Based Linking Option Description

Modify documents to include
links to models

Select this option to enable the RMI
to insert navigation objects into the
requirements document. By default,
the RMI inserts only bookmarks
(when needed) into the requirements
document.

Model file reference Specify how to locate the model
path from a requirements document.
Valid options are:

• absolute

• none (on MATLAB path)

For more information, see “Resolving
the Document Path” on page 2-15.

Linking from a Simulink Object to a Specified
Location in a Requirements Document
In the following step, you create a link from another Simulink object to
another requirement in the requirements document that you created. Use
document indexing instead of selection-based linking.

1 In the sf_car_linking model, right-click the transmission block and select
Requirements > Edit/Add Links.

The Requirements dialog box for the Engine block opens.

2 In the Requirements: transmission dialog box, click New to add a new
requirement.

3 In the Description field, enter Tranmission requirements.

4 In the Document type field, select Microsoft Word to search only for
those file types.

5 Next to the Document type field, click Browse.

2-9

2 Managing Model Requirements

6 Locate the requirements document, requirements.docx, and select Open.

The file path appears in the Document field.

Note For information about how the RMI resolves the path to the
requirements document, see “Resolving the Document Path” on page 2-15.

7 Click the Document Index tab to create an index of the requirements
document so that you can easily access specific locations in the document.

Note After you click the Document Index tab, the document indexing
begins immediately. You see the following status bar.

If you do not want the document index or if it takes too long to process the
file, click Cancel. If you click Cancel, processing stops and the software
creates a partial document index. You cannot resume the document
indexing unless you restart your MATLAB session.

8 From the automatically generated list of headings and bookmarks in the
document, select Transmission Requirements.

2-10

Linking a Simulink® Object to a Location in a Requirements Document

Note The document index includes the bookmark
Simulink_requirement_item_1 created during the selection-based linking
tutorial in “Linking from a Simulink Object to a Selected Item in a
Requirements Document” on page 2-7.

9 Click Apply to create the link from the requirements document text to the
Engine block and redisplay the Requirements tab.

10 (Optional) To provide additional details about the current requirement, on
the Requirements tab, in the User tag field, enter additional, descriptive
text.

11 To verify the link from the transmission block to the requirement,
right-click the transmission block and select Requirements.

The name of the requirement in the new link is a submenu selection.

2-11

2 Managing Model Requirements

12 Save the sf_car_linking model.

Creating a Requirements Document in a Microsoft
Excel Spreadsheet
For the next two tutorials, create a requirements document in a
Microsoft Excel spreadsheet with the following content and save it as
requirements.xlsx.

Note The requirements document for this exercise is in Microsoft Excel 2007
format. If you do not have Microsoft Excel 2007, you can use earlier versions
of the Microsoft Excel software.

Adding Requirement Links to Multiple Objects
Simultaneously
You can add or delete links to requirements for a selection of multiple
Simulink or Stateflow objects. In this example, you modify the requirements
document to add a third requirement, and link two objects in the model to
the new requirement:

1 Open the Microsoft Excel requirements document (requirements.xlsx).

2 In the sf_car_linking model, select two objects together:

• transmission

2-12

Linking a Simulink® Object to a Location in a Requirements Document

• shift_logic

3 Right-click any of the blocks that you selected and then select
Requirements > Add Links to All.

The Add requirements dialog box opens for those two blocks.

4 Add a new requirement called Shift logic requirements.

5 Browse to the Microsoft Excel requirements document and click Open.

Note For information about how the RMI resolves the path to the
requirements document, see “Resolving the Document Path” on page 2-15.

6 In the Location drop-down list, select Sheet range.

7 Next to the Location drop-down list, enter A1:A2 to specify the range of
cells for the Shift Logic Requirements.

8 Click OK to close the Add requirements dialog box.

9 In the sf_car_linking model, verify that both the shift_logic Stateflow
chart and the transmission block have a new requirement, Shift logic
requirements.

10 Save the sf_car_linking model.

Linking a Signal Builder Block to a Requirement
The RMI can create a link from a Signal Builder block to a requirements
document:

1 In the sf_car_linking model, double-click the User Inputs block.

The Signal Builder dialog box opens, displaying four groups of signals.

2 At the far-right end of the toolbar, click the Show verification settings

button . You see a Requirements pane in the Signal Builder dialog
box.

2-13

2 Managing Model Requirements

3 Place your cursor in the window, right-click, and select Edit/Add Links.

The Requirements dialog box opens.

4 Click New. In the Description field, enter User input requirements.

5 Browse to the Microsoft Excel requirements document and click Open.

6 In the Location drop-down list, select Search text to link to specified
text in the spreadsheet.

7 Next to the Location drop-down list, enter User Input Requirements.

8 Click Apply to create the link.

9 To verify that the RMI creates the link, in the Model Editor, select the User
Inputs block, right-click, and select Requirements.

10 Save the sf_car_linking model.

Note Links that you create in this way associate requirements information
with individual signal groups, not with the entire Signal Builder block.

In this example, switch to a different tab to link a requirement to another
signal group.

2-14

Linking a Simulink® Object to a Location in a Requirements Document

Resolving the Document Path
When you browse and select a requirements document, the RMI optionally
stores the location of the document with a fully specified absolute path. You
can also enter a relative path for the document location. A relative path can be
a partial path or no path at all. If you use a relative path, the document is not
constrained to a single location in the file system. With a relative path, the
RMI resolves the exact location of the requirements document in this order:

1 The software attempts to resolve the path relative to the current MATLAB
folder.

2 If there is no path specification and the document is not in the current
folder, the software uses the MATLAB search path to locate the file.

3 If the RMI cannot locate the document relative to the current folder or the
MATLAB search path, the RMI resolves the path relative to the model
file folder.

The following examples illustrate the procedure for locating a requirements
document.

Relative (Partial) Path Example

Current MATLAB folder C:\work\scratch

Model file C:\work\models\controllers\pid.mdl

Document link ..\reqs\pid.html

Documents searched for
(in order)

C:\work\reqs\pid.html
C:\work\models\reqs\pid.html

Relative (No) Path Example

Current MATLAB folder C:\work\scratch

Model file C:\work\models\controllers\pid.mdl

2-15

2 Managing Model Requirements

Requirements document pid.html

Documents searched for
(in order)

C:\work\scratch\pid.html
<MATLAB path dir>\pid.html
C:\work\models\controllers\pid.html

Absolute Path Example

Current MATLAB folder C:\work\scratch

Model file C:\work\models\controllers\pid.mdl

Requirements document C:\work\reqs\pid.html

Documents searched for C:\work\reqs\pid.html

2-16

Viewing Simulink® Objects That Have Requirements Links

Viewing Simulink Objects That Have Requirements Links

In this section...

“Highlighting Objects with Requirements in the Model Editor” on page 2-17

“Highlighting Objects with Linked Requirements from Model Explorer”
on page 2-18

Highlighting Objects with Requirements in the Model
Editor
To see the Simulink objects in the sf_doors_linking model that you linked
requirements to:

1 Open the sf_doors_linking model.

2 To force model-wide library block updates so that all library linked blocks
are up to date, select Edit > Update Diagram

3 Select Tools > Requirements > Highlight Model.

The Engine and transmission blocks appear highlighted.

2-17

2 Managing Model Requirements

Highlighting Objects with Linked Requirements from
Model Explorer
The Model Explorer offers two ways to identify Simulink objects with linked
requirements:

• Click Display objects with requirements () to list only those objects
in the model that have links to requirements.

• Click Highlight Items with Requirements on Model () to open the
model in the Model Editor, with the objects having linked requirements
highlighted.

2-18

Deleting Requirement Links from Simulink® Objects

Deleting Requirement Links from Simulink Objects

In this section...

“Deleting a Single Link from a Simulink Object” on page 2-19

“Deleting All Links from a Simulink Object” on page 2-19

“Deleting Links from Multiple Simulink Objects” on page 2-19

Deleting a Single Link from a Simulink Object
To delete a single link to a requirement from a Simulink object:

1 Right-click a Simulink object and select Requirements > Edit/Add
Links.

The Requirements dialog box opens.

2 In the top-most window, select the link that you want to delete.

3 Click the Delete button.

4 Click Apply to confirm the deletion.

Deleting All Links from a Simulink Object
To delete all links to requirements from a Simulink object:

1 Right-click the object and select Requirements > Delete All Links

2 Click the Delete button.

3 Click Apply to confirm the deletion.

Deleting Links from Multiple Simulink Objects
To delete all links to requirements for a group of Simulink objects:

1 Right-click one of the objects and select Requirements > Delete All.

2 Click the Delete button.

2-19

2 Managing Model Requirements

3 Click Apply to confirm the deletion.

2-20

Creating Requirements in Linked Libraries

Creating Requirements in Linked Libraries
You can create a requirement link for the contents of a library model. If you
copy a library linked object to a Simulink model and disable the link, the
software copies the contents of the linked object, including requirement links,
to the model. Any navigation control in the requirements document still links
to the object in the library.

You can also create a requirement link for the copy of a library linked object
in a model (Model 1 in the following graphic). If you then push the change to
the library, the software copies the requirement link to the library. However,
any navigation control in the requirements document still links to the object
in Model 1.

If you then link to that library object from another model (Model 2) and
disable the link, the software copies the link to the requirement. Any
navigation control in the requirements document still links to Model 1,
creating the situation illustrated in the following graphic.

���������	
�
���
�����	

����������
��

��
����

���������	

��
����

2-21

2 Managing Model Requirements

Creating a Requirements Report

In this section...

“Creating the Default Requirements Report” on page 2-22

“Customizing a Requirements Report” on page 2-26

Creating the Default Requirements Report
After you add requirements to a model, you can generate a report on all the
requirements associated with the model and its blocks.

To generate a requirements report for the sf_car_linking model that you
saved in “Linking a Signal Builder Block to a Requirement” on page 2-13:

1 Open the sf_car_linking model.

2 Select Tools > Requirements > Generate Report.

The RMI searches through all the blocks and subsystems in the model for
associated requirements. It generates and displays a complete report in
HTML format with the default name requirements.html .

Table of Contents / List of Tables
The beginning of the report includes:

• A Table of Contents that lists the major sections of the report. There is one
System section for the top-level model and one System section for each
subsystem or referenced model. The final section lists the systems and
subsystems that do not have any requirements.

• A List of Tables in the report, numbered by section.

2-22

Creating a Requirements Report

Model Information
The Model Information contains version information about the model for
which you created the report.

2-23

2 Managing Model Requirements

Documents Information
The Documents Information section lists all the requirements documents to
which objects in the model link to.

2-24

Creating a Requirements Report

System
The first System section lists information about the top-level model,
sf_car_linking. It also lists information about its child objects that have
requirements—the shift_logic chart and the Passing Maneuver signal group.
The subsystems in sf_car_linking that have requirements—Engine and
transmission—each have their own System section.

The first System section also lists objects in the top-level model that do not
have requirements.

Systems and subsystems with no requirements
The Systems and subsystems with no requirements section lists objects in the
model that do not have requirements links. However, it does not list child

2-25

2 Managing Model Requirements

objects that have requirements links. In this example, that list includes the
top-level model (sf_car_linking), which does not have links to requirements.

Customizing a Requirements Report
RMI uses the Simulink® Report Generator™ software to generate the
requirements report. You can customize the report using the RMI, or you can
use the Simulink Report Generator software for advanced customization.

Customizing the Report Using the RMI
To customize the requirements report in the Model Editor:

1 Select Tools > Requirements > Settings.

The Requirements Settings dialog box opens.

2 Click the Report tab.

2-26

Creating a Requirements Report

The options that you select in the Requirements Settings dialog box
determine the contents of the report.

Requirements Settings Report
Option

Description

Highlight the model before
generating report

Highlights the Simulink objects
with requirements in the Model
Editor before creating the report
and then highlights them in the
report.

Report objects with no links to
requirements

Lists Simulink objects that have no
requirements.

Use document index in
requirements tables where
possible

Uses a document ID, if available,
instead of a path name in the
requirements table.

3 Select the options that you want and click Close.

2-27

2 Managing Model Requirements

Run the report to generate the requirements report for your model.

Customizing the Report Using the Simulink Report Generator
Software
If you have a license for the Simulink Report Generator software, you can
further modify the default requirements report.

To customize the requirements report, first start the Simulink Report
Generator software. At the MATLAB command prompt, enter the following
command:

setedit requirements

The Report Explorer dialog box opens the requirements report template that
the RMI uses when generating a requirements report. The report template
contains Simulink Report Generator components that define the structure
of the requirements report.

If you click a component in the middle pane, the options you can specify for
that component appear in the right-hand pane. For detailed information
about using a particular component to customize your report, at the bottom
of the right-hand pane, click Help.

In addition to the standard report components, Simulink Report Generator
provides RMI-specific components. These components insert information
about Simulink objects whether or not they have associated requirements:

• Missing Requirements Block Loop — Applies all child components to
blocks that have no requirements

• Missing Requirements System Loop— Applies all child components to
systems that have no requirements

• Requirements Block Loop— Applies all child components to blocks that
have requirements

• Requirements Documents Table— Inserts a table that lists requirements
documents

• Requirements Signal Loop — Applies all child components to signal
groups with requirements

2-28

Creating a Requirements Report

• Requirements Summary Table — Inserts a property table listing blocks
that have requirements and requirements details

• Requirements System Loop — Applies all child components to systems
with requirements

• Requirements Table — Inserts a table that lists system and subsystem
requirements

There are several ways you can customize the requirements report:

• Add or delete components.

• Move components up or down in the report hierarchy.

• Customize components to specify how the report presents certain
information.

For more information about customizing reports, see Simulink Report
Generator User’s Guide.

2-29

2 Managing Model Requirements

Navigating from Requirements Documents to Simulink
Objects

In this section...

“Configuring the RMI to Insert Navigation Controls” on page 2-30

“Enabling ActiveX Controls” on page 2-30

“Creating Navigation Controls in Requirements Documents” on page 2-31

“Troubleshooting Simulink Navigation Controls in Microsoft Office 2007”
on page 2-32

Configuring the RMI to Insert Navigation Controls
To create links from the requirements document to Simulink objects, the
RMI inserts Microsoft® ActiveX® controls into the requirements document.
To initiate that, first run the RMI setup script. At the MATLAB Command
Window, enter the following command:

rmi setup

This command runs a setup script that registers ActiveX® controls that the
RMI inserts into requirements documents. If you enable this feature, as
described in “Enabling ActiveX Controls” on page 2-30, the RMI can insert
these controls into requirements documents when you create selection-based
links. These controls allow you to navigate from a requirements document to
the linked Simulink object.

Note If you have installed IBM Rational DOORS software on the machine,
this command also invokes the corresponding setup script for the IBM
Rational DOORS software. For more information, see “Configuring the
Requirements Management Interface for DOORS Software” on page 3-4.

Enabling ActiveX Controls
When you use selection-based linking to create a link from a Simulink
object to a requirements document, the RMI does not automatically insert a
navigation object in the requirements document. (It does insert a bookmark,

2-30

Navigating from Requirements Documents to Simulink® Objects

when necessary, to enable the RMI to link to the correct location in the
requirements document.)

To enable the RMI to insert a navigation object when creating a
selection-based link:

1 In the Model Editor, select Tools > Requirements > Settings.

2 Select the Selection-based linking tab.

3 SelectModify documents to include links to models to allow the RMI
to insert the navigation controls.

4 Click Close to close the Requirements Settings dialog box.

Note For more information about the selection-based linking settings, see
“Customizing Selection-Based Linking” on page 2-8.

Creating Navigation Controls in Requirements
Documents
If you enable the Modify documents to include links to models option,
you can create navigation controls that link from the requirements document
back to the Simulink object. Follow these steps, used for selection-based
linking with the sf_car_linking model:

1 Open the requirements document requirements.docx.

2 Select the text under “Engine Requirements.”

3 Open the sf_car_linking model.

4 Right-click the engine RPM block and select Requirements > Add link
to Word selection.

5 The RMI inserts an ActiveX control into the requirements document.

2-31

2 Managing Model Requirements

Troubleshooting Simulink Navigation Controls in
Microsoft Office 2007

• “Saving Requirements Documents to Microsoft Word 2007 Format” on
page 2-32

• “Field Codes in Requirements Document” on page 2-33

• “ActiveX Control Does Not Link to Model Element” on page 2-35

• “Deleting an ActiveX Control from Microsoft® Excel 2007 file” on page 2-37

Saving Requirements Documents to Microsoft Word 2007
Format
If you create a requirements document with an earlier version of Microsoft
Word than Word 2007, the two-way links automatically work. If you save
the document in Microsoft Word 2007 format, make sure that the two-way
links continue to work:

1 In the Microsoft Word window, in the upper-left corner, click theMicrosoft
Office Button.

2 Select Save As > Word Document.

You see the following dialog box.

2-32

Navigating from Requirements Documents to Simulink® Objects

3 Click OK.

You then see the following dialog box.

4 Click Yes to save the current document in Microsoft Word 2007 format,
with a .docx extension.

Field Codes in Requirements Document
If your Microsoft Word requirements document displays the field codes in
addition to, or instead of, the ActiveX icon, you must change a setting in
Microsoft Word 2007.

The following graphic shows a requirements document created in Microsoft
Word 2003, with the field codes displayed.

2-33

2 Managing Model Requirements

The following graphic shows a requirements document created in Microsoft
Word 2007, with the field codes displayed.

To hide the field codes and display the ActiveX icon:

1 In the Microsoft Word window, in the upper-left corner, click theMicrosoft
Office Button.

2 In the pane that opens, at the bottom, click Word Options.

3 In the left-hand portion of the pane, click Advanced.

4 In the Advanced pane, scroll to the Show document content section
and clear the Show field codes instead of their values option.

2-34

Navigating from Requirements Documents to Simulink® Objects

ActiveX Control Does Not Link to Model Element
If you click an ActiveX control that links to a Simulink or Stateflow object,
and the object does not open, you have two options:

• Store your requirements documents in trusted locations, as described in
the Microsoft Office 2007 documentation. The Trust Center does not check
files for ActiveX controls stored in trusted locations, so you can maintain
your Trust Center restrictions.

• Enable ActiveX controls:

1 In the Microsoft Word or Microsoft Excel window, in the upper-left
corner, click the Microsoft Office Button.

2-35

2 Managing Model Requirements

2 In the pane that opens, at the bottom, click Word Options or Excel
Options, depending on which program you are running.

3 In the left-hand portion of the pane, click Trust Center.

4 In the Trust Center pane, click Trust Center Settings.

5 In the Trust Center pane, on the right select ActiveX Settings.

6 Select the setting that you want for ActiveX controls:

2-36

Navigating from Requirements Documents to Simulink® Objects

• Prompt me for enabling all controls with minimum restrictions
to decide each time you click an ActiveX control if you want to enable
all controls.

• Enable all controls without restrictions and without
prompting to enable all ActiveX controls.

7 Close the application and restart your computer so that the settings go
into effect.

Deleting an ActiveX Control from Microsoft Excel 2007 file
To remove an ActiveX control from your Microsoft Excel 2007 file:

1 Your document has an ActiveX control in a worksheet cell.

In the Microsoft Excel window, in the upper-left corner, click theMicrosoft
Office Button.

2 In the pane that opens, at the bottom, click Excel Options.

3 In the Excel Options dialog box, in the left-hand pane, click Popular.

2-37

2 Managing Model Requirements

4 On the Popular pane, in the Top options for working with Excel
section, select Show Developer tab in the Ribbon.

5 Click OK.

6 On the Developer tab, select Design Mode.

2-38

Navigating from Requirements Documents to Simulink® Objects

When you select Design Mode, the ActiveX control is no longer visible in
the cell.

7 Click where the ActiveX control was, and you see four handles showing
the location of the control.

8 Select Home > Cut to delete the control.

2-39

2 Managing Model Requirements

Linking to Custom Types of Requirements Documents

In this section...

“Built-In Link Types” on page 2-40

“Why Create a Custom Link Type?” on page 2-40

“Custom Link Type Registration” on page 2-41

“Link Properties” on page 2-42

“Link Type Properties” on page 2-42

“Creating a Custom Link Requirement Type” on page 2-44

“Navigating to Simulink Objects from External Documents” on page 2-53

Built-In Link Types
The files for built-in link types are in the private folder of the requirements
management tool (matlabroot\toolbox\slvnv\reqmgt\private):

linktype_rmi_doors.m
linktype_rmi_excel.m
linktype_rmi_html.m
linktype_rmi_pdf.m
linktype_rmi_text.m
linktype_rmi_word.m

Built-in link types use the same format and naming convention as custom
types. However, built-in link types use a different system for identification
in the model file that supports backward and forward compatibility. Use the
built-in link types as examples when developing your custom link types.

Why Create a Custom Link Type?
In addition to linking to built-in types of requirements documents, you can
register custom requirements document types with the RMI. Then you can
create requirement links to these types of documents.

Custom link types let you define how you open and navigate to a document,
browse for a document, and view an index of its contents. When you define a

2-40

Linking to Custom Types of Requirements Documents

custom link type, you create MATLAB M-code functions that perform these
operations. The RMI invokes the registered code:

• When navigating to a document with the new link type that you created.

• When browsing for a document or displaying the index of a document
within the Requirements dialog box.

Using the external interfaces supported by the MATLAB software, you
can interface with external applications and run programs from the
command shell. You can also use the built-in Web browser and text editor to
display custom variants of HTML and text files without installing external
applications.

With custom link types, you can:

• Link to requirement items in commercial requirement tracking software

• Link to in-house database systems

• Link to document types that the RMI does not support

Custom Link Type Registration
You register custom link types with a unique MATLAB function name. The
function must exist on the MATLAB path and must not require any input
arguments. The function must return a single output argument that is an
instance of the requirements link type class. You can register your link type
with the following MATLAB command:

rmi register mytargetfilename

mytargetfilename is the name of the MATLAB function in the M-file,
mytargetfilename.m.

Once you register a link type, it appears in the Requirements dialog box as an
entry in the Document type drop-down list. A file in your preference folder
contains the list of registered link types, so you can restore it in new MATLAB
sessions. You can remove a link type with the following MATLAB command:

rmi unregister mytargetfilename

2-41

2 Managing Model Requirements

When you create links using custom link types, the software saves the
registration name in the model. When you attempt to navigate to a link, the
RMI resolves the link type against the registered list. If the software cannot
find the link type, you see an error message.

Link Properties
Requirement links are the data structures, saved in the Simulink model, that
identify a specific location within a document. You get and set the links on a
block using the rmi command. The RMI encapsulates link information in a
MATLAB structure array. Each element of the array is a single requirement
link.

Links and link types work together to perform navigation and manage
requirements. The document and ID fields of links uniquely identify the
linked item in external documents. The RMI passes both of these strings to
the navigation command when you navigate a link from the model.

Link Type Properties
Link type properties define how links are created, identified, navigated to,
and stored within the requirement management tool. The following table
describes each of these properties.

Property Description

Registration The name of the M-file that creates the link type. The RMI
stores this name in the Simulink model.

Label A string to identify this link type. In the Requirements
dialog box, this string appears on the Document type
drop-down list for a Simulink or Stateflow object.

IsFile A Boolean property that indicates if the linked documents
are files within the computer file system. If a document is
a file:

• The software uses the standard method for resolving
the path.

• In the Requirements dialog box, when you click
Browse, the file selection dialog box opens.

2-42

Linking to Custom Types of Requirements Documents

Property Description

Extensions An array of file extensions. Use these file extensions as
filter options in the Requirements dialog box when you
click Browse. The file extensions infer the link type based
on the document name. If you registered more than one
link type for the same file extension, the link type that you
registered takes first priority.

LocDelimiters A string containing the list of supported navigation
delimiters. The first character in the ID of a requirement
specifies the type of identifier. For example, an identifier
can refer to a specific page number (#4), a named bookmark
(@my_tag), or some searchable text (?search_text). The
valid location delimiters determine the possible entries in
the Requirements dialog box Location drop-down list.

NavigateFcn The MATLAB callback you invoke when you click a link.
The function has two input arguments: the document field
and the ID field of the link:

feval(LinkType.NavigateFcn, Link.document, Link.id)

ContentsFcn The MATLAB callback you invoke when you click the
Document Index tab in the Requirements dialog box.
This function has a single input argument that contains
the full path of the resolved function or, if the link type is
not a file, the Document field contents.

The function returns three outputs:

• Labels

• Depths

• Locations

BrowseFcn The MATLAB callback you invoke when you click Browse
in the Requirements dialog box. This function is not
necessary when the link type is a file. The function takes
no input arguments and returns a single output argument
that identifies the selected document.

2-43

2 Managing Model Requirements

Creating a Custom Link Requirement Type
In this example, you implement a custom link type to a hypothetical document
type, a text file with the extension .abc. Within a document, the requirement
items are identified with a special text string, Requirement::, followed by a
single space and then the requirement item inside quotation marks (").

Create a document index containing a list of all the requirement items. When
navigating from the Simulink model to the requirements document, the
document opens in the MATLAB Editor at the line of the requirement that
you want.

To create a custom link requirement type:

1 Write a function that implements the custom link type and save it
as an M-file on the MATLAB path. In this example, the M-file is
rmicustabcinterface.m, containing the function, rmicustabcinterface,
that implements the ABC files shipping with your installation. You can
view it here, or at the MATLAB prompt, type edit rmicustabcinterface.

function linkType = rmicustabcinterface
%RMICUSTABCINTERFACE - Example custom requirement link type
%
% This file implements a requirements link type that maps
% to "ABC" files.
% You can use this link type to map a line or item within an
% ABC file to a Simulink or Stateflow object.
%
% You must register a custom requirement link type before
% using it. Once registered, the link type will be reloaded in
% subsequent sessions until you unregister it. The following
% commands perform registration and registration removal.
%
% Register command: >> rmi register rmicustabcinterface
% Unregister command: >> rmi unregister rmicustabcinterface
%
% There is an example document of this link type contained in
% the requirement demo directory to determine the path to the
% document invoke:
%
% >> which demo_req_1.abc

2-44

Linking to Custom Types of Requirements Documents

% Copyright 1984-2005 The MathWorks, Inc.
% $Revision: 1.1.4.3 $ $Date: 2007/01/21 11:56:15 $

% Create a default (blank) requirement link type
linkType = ReqMgr.LinkType;
linkType.Registration = mfilename;

% Label describing this link type
linkType.Label = 'ABC file (for demonstration)';

% File information
linkType.IsFile = 1;
linkType.Extensions = {'.abc'};

% Location delimiters
linkType.LocDelimiters = '>@';
linkType.Version = ''; % not needed

% Uncomment the functions that are implemented below
linkType.NavigateFcn = @NavigateFcn;
linkType.ContentsFcn = @ContentsFcn;

function NavigateFcn(filename,locationStr)
if ~isempty(locationStr)

findId=0;
switch(locationStr(1))
case '>'

lineNum = str2num(locationStr(2:end));
openFileToLine(filename, lineNum);

case '@'
openFileToItem(filename,locationStr(2:end));

otherwise
openFileToLine(filename, 1);

end
end

function openFileToLine(fileName, lineNum)

2-45

2 Managing Model Requirements

if lineNum > 0
err = javachk('mwt', 'The MATLAB Editor');
if isempty(err)

editor = com.mathworks.mlservices.MLEditorServices;
editor.openDocumentToLine(fileName, lineNum);

end
else

edit(fileName);
end

function openFileToItem(fileName, itemName)
reqStr = ['Requirement:: "' itemName '"'];
lineNum = 0;
fid = fopen(fileName);
i = 1;
while lineNum == 0

lineStr = fgetl(fid);
if ~isempty(strfind(lineStr, reqStr))

lineNum = i;
end;
if ~ischar(lineStr), break, end;
i = i + 1;

end;
fclose(fid);
openFileToLine(fileName, lineNum);

function [labels, depths, locations] = ContentsFcn(filePath)
% Read the entire M-file into a variable
fid = fopen(filePath,'r');
contents = char(fread(fid)');
fclose(fid);

% Find all the requirement items
fList1 = regexpi(contents,'\nRequirement:: "(.*?)"','tokens');

% Combine and sort the list
items = [fList1{:}]';
items = sort(items);

2-46

Linking to Custom Types of Requirements Documents

items = strcat('@',items);

if (~iscell(items) && length(items)>0)
locations = {items};
labels = {items};

else
locations = [items];
labels = [items];

end

depths = [];

2 To register the custom link type ABC, type the following MATLAB
command:

rmi register rmicustabcinterface

The ABC file type appears on the Requirements dialog box drop-down list
of document types.

3 Create a text file with the .abc extension containing several requirement
items marked by the Requirement:: string. For your convenience,
an example file ships with your installation. The example file is
demo_req_1.abc and resides in matlabroot\toolbox\slvnv\rmidemos.
demo_req_1.abc contains the following content:

Requirement:: "Altitude Climb Control"

Altitude climb control is entered whenever:
|Actual Altitude- Desired Altitude | > 1500

Units:
Actual Altitude - feet
Desired Altitude - feet

Description:

When the autopilot is in altitude climb
control mode, the controller maintains a

2-47

2 Managing Model Requirements

constant user-selectable target climb rate.

The user-selectable climb rate is always a
positive number if the current altitude is
above the target altitude. The actual target
climb rate is the negative of the user
setting.

<END "Altitude Climb Control">

Requirement:: "Altitude Hold"

Altitude hold mode is entered whenever:
|Actual Altitude- Desired Altitude | <

30*Sample Period*(Pilot Climb Rate / 60)

Units:
Actual Altitude - feet
Desired Altitude - feet
Sample Period - seconds
Pilot Climb Rate - feet/minute

Description:

The transition from climb mode to altitude
hold is based on a threshold that is
proportional to the Pilot Climb Rate.

At higher climb rates the transition occurs
sooner to prevent excessive overshoot.

<END "Altitude Hold">

Requirement:: "Autopilot Disable"

Altitude hold control and altitude climb

2-48

Linking to Custom Types of Requirements Documents

control are disabled when autopilot enable
is false.

Description:

Both control modes of the autopilot
can be disabled with a pilot setting.

<END "Autopilot Disable">

Requirement:: "Glide Slope Armed"

Glide Slope Control is armed when Glide
Slope Enable and Glide Slope Signal
are both true.

Units:
Glide Slope Enable - Logical
Glide Slope Signal - Logical

Description:

ILS Glide Slope Control of altitude is only
enabled when the pilot has enabled this mode
and the Glide Slope Signal is true. This indicates
the Glide Slope broadcast signal has been
validated by the on board receiver.

<END "Glide Slope Armed">

Requirement:: "Glide Slope Coupled"

Glide Slope control becomes coupled when the control
is armed and (Glide Slope Angle Error > 0) and
Distance < 10000

2-49

2 Managing Model Requirements

Units:
Glide Slope Angle Error - Logical
Distance - feet

Description:

When the autopilot is in altitude climb control
mode the controller maintains a constant user
selectable target climb rate.

The user-selectable climb rate is always a positive
number if the current altitude is above the target
altitude the actual target climb rate is the
negative of the user setting.

<END "Glide Slope Coupled">

4 Open the model aero_dap3dof.

5 Right-click the Reaction Jet Control subsystem and select
Requirements > Edit/Add Links.

The Requirements dialog box opens.

6 Click New to add a new requirement link. The Document type drop-down
list now contains the ABC file (for demonstration) option.

2-50

Linking to Custom Types of Requirements Documents

7 Set Document type to ABC file (for demonstration) and browse to
the demo_req_1.abc file. The browser shows only the files with the .abc
extension.

8 To define a particular location in the requirements document, use the
Location field.

In this example, the rmicustabcinterface function specifies two types of
location delimiters for your requirements:

• > — Line number in a file

• @— Named item, such as a bookmark, function, or HTML anchor

Note The rmi reference page describes other types of requirements
location delimiters.

The Location drop-down list contains these two types of location delimiters
whenever you set Document type to ABC file (for demonstration).

9 Select Line number. Enter the number 26, which corresponds with the
line number for the Altitude Hold requirement in demo_req_1.abc.

10 In the Description field, enter Altitude Hold, to identify the requirement
by name.

11 Click Apply.

12 Verify that the Altitude Hold requirement links to the Reaction
Jet Control subsystem. Right-click the subsystem and select
Requirements > 1. “Altitude Hold”.

2-51

2 Managing Model Requirements

Creating a Document Index
A document index is a list of all the requirements in a given document. To
create a document index, MATLAB M-code uses file I/O functions to read the
contents of a requirements document into a MATLAB variable. Then the RMI
extracts the list of requirement items.

The example requirements document, demo_req_1.abc, defines four
requirements using the string Requirement::. To generate the
document index for an ABC file, the ContentsFcn function, in the
rmicustabcinterface.m file, extracts the requirements names and inserts
@ before each name.

Note To see the code for the ContentsFcn file, go to step 1 in “Creating a
Custom Link Requirement Type” on page 2-44.

For the demo_req_1.abc file, in the Requirements: Engine dialog box,
click the Document Index tab. The ContentsFcn function generates the
document index automatically.

2-52

Linking to Custom Types of Requirements Documents

Navigating to Simulink Objects from External
Documents
The RMI includes several functions that simplify creating navigation
interfaces in external documents. The external application that displays
your document must support an application programming interface (API) for
communicating with the MATLAB software.

Providing Unique Object Identifiers
Whenever you create a requirement link for a Simulink or Stateflow object,
the RMI creates a globally unique identifier for that object. This identifier
identifies the object. The identifier does not change if you rename or move the
object, or add or delete requirement links. The RMI uses the unique identifier
only to resolve an object within a model. The identifier is globally unique and

2-53

2 Managing Model Requirements

does not collide with identifiers in other models, unless the two models derive
from the same original model. Unique object identifiers have formats such
as:GIDa_cd14afcd_7640_4ff8_9ca6_14904bdf2f0f.

Using the rmiobjnavigate Function
The rmiobjnavigate function identifies the appropriate Simulink or Stateflow
object, highlights that object, and brings the appropriate editor window to the
front of the screen. When you navigate to a Simulink model from an external
application, invoke this function. Internally, this function creates a table of
all the unique object identifiers within a model for efficient object lookup.

The first time you navigate to an item in a particular model, you might
experience a slight delay while the software constructs the internal navigation
table. You do not experience a long delay on subsequent navigation.

Determining the Navigation Command
Once you create a requirement link for a Simulink or Stateflow object, at the
MATLAB prompt, use the rmi function to find the appropriate navigation
command string. The return value of the navCmd method is a string that
navigates to the correct object when evaluated by the MATLAB software:

cmdString = rmi('navCmd', block);

Send this exact string to the MATLAB software for evaluation as part of
navigating from the external application to the Simulink model.

Using the ActiveX Navigation Control
The RMI uses software that includes a special Microsoft ActiveX control
to enable navigation to Simulink objects from Microsoft Word and Excel®

documents. You can use this same control in any other application that
supports ActiveX within its documents.

The control is derived from a push button and has the Simulink icon.
There are two instance properties that define how the control works. The
tooltipstring property is the string that is displayed in the control ToolTip.
The MLEvalCmd property is the string that you pass to the MATLAB software
for evaluation when you click the control.

2-54

Linking to Custom Types of Requirements Documents

Typical Code Sequence for Establishing Navigation Controls
When you create an interface to an external tool, you can automate the
procedure for establishing links. This way, you do not need to manually
update the dialog box fields. This type of automation occurs as part of the
selection-based linking for certain built-in types, such as Microsoft Word
and Excel documents.

To automate the procedure for establishing links:

1 Select a Simulink or Stateflow object and an item in the external document.

2 Invoke the link creation action either from a Simulink menu or command,
or a similar mechanism in the external application.

3 Identify the document and current item using the scripting capability of
the external tool. Pass this information to the MATLAB software. Create
a requirement link on the selected object using rmi('createempty') and
rmi('cat').

4 Determine the MATLAB navigation command string that you must embed
in the external tool, using the navCmd method:

cmdString = rmi('navCmd',obj)

5 Create a navigation item in the external document using the scripting
capability of the external tool. Set the MATLAB navigation command
string in the appropriate property.

For example, you can use the code for selection-based linking to the Microsoft
Word, MicrosoftExcel, and IBM Rational DOORS software. The files are
contained in matlabroot\toolbox\slvnv\reqmgt\private:

selection_link_doors.m
selection_link_excel.m
selection_link_word.m

2-55

2 Managing Model Requirements

Using the System Requirements Block in a Model

In this section...

“About the System Requirements Block” on page 2-56

“Adding the System Requirements Block” on page 2-56

“Renaming the System Requirements Block” on page 2-57

About the System Requirements Block
To list all the requirements for a model or a subsystem in a Simulink model,
add the System Requirements block from the Simulink Verification and
Validation library. You can place this block anywhere in a model. You cannot
connect this block to other Simulink blocks.

After you place the System Requirements block in a Simulink model, the
block lists the requirement links for that model or subsystem. If a model
includes a System Requirements block, that block automatically updates the
listing as you add, modify, or delete requirements for the model or subsystem.
Requirements associated with individual blocks in the model are not listed.

Adding the System Requirements Block
To list the requirements in the Engine subsystem of the sf_car_linking
model:

1 Open the sf_car_linking model.

2 Double-click the Engine block to open it.

3 To open the Simulink Library Browser, click the Library Browser tool .

4 In the left pane of the Simulink Library Browser, select Simulink
Verification and Validation.

The Simulink Verification and Validation library opens in the right
pane of the Simulink Library Browser. It contains one block—System
Requirements.

2-56

Using the System Requirements Block in a Model

5 Drag the System Requirements block to an empty space in the Engine
subsystem.

The software automatically populates the block with the system
requirement for the Engine subsystem.

6 Double-click the link to open the requirements document,
requirements.docx, with the linked text highlighted.

Renaming the System Requirements Block
The list of the system requirements appears under a default heading,
System Requirements. You can change the heading by renaming the System
Requirements block:

1 In the sf_car_linking/Engine subsystem, right-click the System
Requirements block.

2 SelectMask Parameters. The Block Parameters dialog box opens.

2-57

2 Managing Model Requirements

3 In the Block Title field, type Engine Requirements and click OK.

The block title is updated in the subsystem.

2-58

Including Requirements Information with Generated Code

Including Requirements Information with Generated Code
After you simulate your model and verify its performance against the
requirements, you can generate code from the model for an embedded
real-time application.

The Real-Time Workshop® Embedded Coder™ software generates code
for Embedded Real-Time (ERT) targets. If the model has any links to
requirements, while generating the code, the software also inserts hyperlinks
to any linked requirements documents in the code comments.

For example, if a block has a requirement, the Real-Time Workshop Embedded
Coder software generates code for that block. In the code comments for that
block, the software inserts a hyperlink to the requirements document that
contains the requirement associated with that block.

Note You must have a license for Real-Time Workshop Embedded Coder to
generate code for an embedded real-time application.

Generated code includes requirements descriptions and hyperlinks to the
requirements documents in the following locations.

Model Object Requirements Location

Model In the main header file, <model>.h

Nonvirtual subsystems At the call site for the subsystem

Virtual subsystems At the call site of the closest nonvirtual parent
subsystem. If a virtual subsystem does not have
a nonvirtual parent, requirement descriptions
appear in the main header file for the model,
<model>.h.

Nonsubsystem blocks In the generated code for the block

To specify that generated code of an ERT target include requirements:

1 Open the rtwdemo_requirements demo model.

2-59

2 Managing Model Requirements

2 Select Simulation > Configuration Parameters.

3 In the Configuration Parameters dialog box, on the Select pane, select
the Real-Time Workshop node.

The currently configured system target must be an ERT target.

����������������	
�����
��
�������
����
�

4 Under Real-Time Workshop, select Comments.

5 In the Custom comments section on the right, select the Requirements
in block comments check box.

6 Under Real-Time Workshop, select Report.

7 On the Report pane, select:

• Create code generation report

• Launch report automatically

8 On the Real-Time Workshop pane, click Build.

9 In the code-generation report, open rtwdemo_requirements.c.

10 Scroll to the code for the Pulse Generator block, clock, for the hyperlink to
the requirement linked to that block.

2-60

Including Requirements Information with Generated Code

11 Click the link to open the requirements document.

Note When you click a requirements link in the code, the software opens
the application for the requirements document, except in DOORS software.
To view a DOORS requirement document, start the DOORS software and
log in before clicking the hyperlink in the code.

2-61

2 Managing Model Requirements

2-62

3

Managing Requirements
with DOORS Software

• “Why Use DOORS Requirements with Simulink Objects?” on page 3-2

• “Configuring the Requirements Management Interface for DOORS
Software” on page 3-4

• “Linking Simulink Objects to DOORS Requirements” on page 3-7

• “Synchronizing a Simulink Model to a DOORS Surrogate Module” on page
3-12

• “Viewing Simulink Objects with Requirements” on page 3-28

• “Creating Requirements Reports” on page 3-30

• “Creating Two-Way Links Between Requirements and Simulink Objects”
on page 3-35

3 Managing Requirements with DOORS® Software

Why Use DOORS Requirements with Simulink Objects?
IBM Rational DOORS software is a requirements management application
that you use to capture, track, and manage requirements. The Requirements
Management Interface (RMI) is a tool set that you use to link objects in a
Simulink model to requirements managed by external applications, including
the DOORS software.

Simulink models represent functional designs of embedded systems that
you build according to specifications and requirements that are managed in
DOORS software. Linking Simulink objects to DOORS requirements allows
you to:

• Provide traceability from Simulink models to DOORS requirements, which
is mandatory for many high-integrity software and hardware projects.

• Access requirements information from each of the linked Simulink objects.

• Use DOORS linking, requirements-analysis, and report-generation
capabilities for information captured in both DOORS requirements and
Simulink models.

Linking DOORS requirements to Simulink objects allows you to:

• Share design details with engineers who are not directly familiar with
the design.

• Improve requirements reviews.

Using RMI and DOORS software, you can:

• Create links between Simulink objects, such as blocks, signals, and
subsystems, to DOORS requirements.

• Navigate between Simulink objects and DOORS requirements with links
that you created using RMI.

• Create a representation of your Simulink model (called a surrogate module)
in the DOORS software. Using the surrogate module, you can create and
review requirements without modifying the requirements document and
without having to use the Simulink software.

3-2

Why Use DOORS® Requirements with Simulink® Objects?

• Create a report for your Simulink model that shows which objects have
links to requirements.

3-3

3 Managing Requirements with DOORS® Software

Configuring the Requirements Management Interface for
DOORS Software

In this section...

“Before You Begin” on page 3-4

“Installing DOORS Software” on page 3-4

“Manually Installing Additional Files for DOORS Software” on page 3-4

“Upgrading DOORS Software” on page 3-5

Before You Begin
IBM Rational DOORS software is a requirements-management application
for capturing, tracking, and managing requirements. If you plan to
use DOORS software with the RMI, you must install additional files to
establish communication between the DOORS application and the Simulink
software. The sections that follow describe the installation and configuration
procedures.

Installing DOORS Software
You can install the DOORS software before or after you install the RMI. In
either case, at the MATLAB command line, run the RMI setup script to copy
all the necessary files to the correct location:

rmi setup

Manually Installing Additional Files for DOORS
Software
The setup script automatically copies all the files to the correct location.
However, in some cases the script fails because of file permissions in your
DOORS installation. If the script fails, manually install additional files.

1 Close the DOORS software if it is running.

2 Copy the following files from matlabroot\toolbox\slvnv\reqmgt to the
<doors_install_dir>\lib\dxl\addins folder.

3-4

Configuring the Requirements Management Interface for DOORS® Software

addins.idx
addins.hlp

Replace any existing versions of the files if you have not modified them;
otherwise, merge their contents.

3 Copy the following files from matlabroot\toolbox\slvnv\reqmgt to the
<doors_install_dir>\lib\dxl\addins\dmi folder.

dmi.hlp
dmi.idx
dmi.inc
runsim.dxl
selblk.dxl

Replace any existing versions of these files.

4 Open the file <doors_install_dir>\lib\dxl\startup.dxl. In the
user-defined files section, add the following include statement:

#include <addins/dmi/dmi.inc>

Upgrading DOORS Software
If you upgrade your DOORS software after installing the RMI, run the setup
script (rmi setup) again.

If you upgrade from Version 7.1 to a later version of the DOORS software,
perform these additional steps:

1 In your DOORS installation folder, navigate to the subfolder
...\lib\dxl\startupFiles .

2 In a text editor, open the file copiedFromDoors7.dxl.

3 Add // before this line to comment it out:

#include <addins/dmi/dmi.inc>

4 Save and close the file.

5 Start the DOORS and MATLAB software.

3-5

3 Managing Requirements with DOORS® Software

6 Run the setup script. At the MATLAB command line, type rmi setup .

3-6

Linking Simulink® Objects to DOORS® Requirements

Linking Simulink Objects to DOORS Requirements

In this section...

“Creating DOORS Requirements” on page 3-7

“Creating One-Way Links from Simulink Objects to DOORS Requirements”
on page 3-8

“Navigating from a Simulink Object to a DOORS Requirement” on page 3-10

Creating DOORS Requirements
Use the RMI to create a link from a Simulink object to a DOORS requirement.
The following example describes how to create this link.

To begin this example, create a DOORS project and formal module, and insert
two requirements:

1 Start the DOORS software.

2 Create a project named Test Project and a new formal module named
Requirements.

3 In the My Requirements module, insert a new object.

4 In the Object 1 properties dialog box, enter the Heading Transmission
Requirements, some text for Object Text, and click OK. (You do not need
to enter any Short Text.)

5 In the My Requirements module, insert another new object.

6 In the Object properties dialog box, enter the Heading Engine
Requirements, some text for Object Text, and click OK. (You do not need
to enter any Short Text.)

7 Save your changes.

3-7

3 Managing Requirements with DOORS® Software

Creating One-Way Links from Simulink Objects to
DOORS Requirements
You can create one-way links from Simulink objects to DOORS requirements
without having to modify the requirements.

For this example, and for the following examples, you create a writable copy
of the sf_car model that ships with your Simulink software.

To create a one-way link from a Simulink object to a requirement:

3-8

Linking Simulink® Objects to DOORS® Requirements

1 In the MATLAB Command Window, open the demo model sf_car.mdl
and save it as sf_car_doors.

2 In the model, right-click the transmission subsystem and select
Requirements > Edit/Add Links.

3 In the Requirements dialog box, click New.

4 For Document type, select DOORS Item.

5 Click Browse.

6 Browse to and select the My Requirements module. Click OK.

7 To list the two requirements that you created in the My Requirements
module, click the Document Index tab.

8 Select 1 Transmission Requirements and click OK.

3-9

3 Managing Requirements with DOORS® Software

9 You have created a one-way link from the transmission subsystem in the
model to the Transmission Requirements requirement in the DOORS
database. To verify the link, in the sf_car_doors model, right-click
the transmission subsystem and select Requirements to see the option
Requirements > 1. “1 Transmission Requirements”.

10 Save the sf_car_doors model.

DOORS IDs
The DOORS software gives each requirement in the formal module a unique
ID. In the My Requirements formal module you created, the IDs are 1 and
2. If you rename the module or rearrange the objects in the module, the IDs
remain unchanged.

The DOORS software also assigns each module a unique eight-digit
hexadecimal number. RMI uses that number, along with the DOORS ID,
to locate requirements. In this example, the Requirements dialog box lists
000001a0 as the My Requirements formal module ID. When you execute the
preceding steps, the formal module ID may be different.

Navigating from a Simulink Object to a DOORS
Requirement
With one-way links, you can navigate from a Simulink object to a requirement
in the DOORS database. To navigate from the transmission subsystem in
your sf_car_doors model using the link that you created:

1 Right-click the transmission subsystem and select Requirements > 1.
“1 Transmission Requirements”

3-10

Linking Simulink® Objects to DOORS® Requirements

The My Requirements module opens to the Transmission Requirements
object.

3-11

3 Managing Requirements with DOORS® Software

Synchronizing a Simulink Model to a DOORS Surrogate
Module

In this section...

“What Is a Surrogate Module?” on page 3-12

“What Is Synchronization?” on page 3-12

“Advantages of Synchronization” on page 3-14

“Synchronizing a Simulink Model to Create a Surrogate Module” on page
3-14

“Customizing the Synchronization” on page 3-16

“Updating the Surrogate Module to Reflect Model Changes” on page 3-22

“Navigating Using the Surrogate Module” on page 3-25

What Is a Surrogate Module?
A surrogate module is a DOORS formal module that is a representation of
a Simulink hierarchy. You use standard DOORS capabilities to navigate
between the Simulink objects in the surrogate module and requirements
in other modules.

What Is Synchronization?
Synchronization creates a DOORS surrogate module. The surrogate module
facilitates navigation between the Simulink object and the requirements,
as the following diagram illustrates.

3-12

Synchronizing a Simulink® Model to a DOORS® Surrogate Module

200
202
203
204
205
206
207
208

1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.3

Model
Subsystem
Block
Block
Block
Subsystem
Block
Block

Object ID Block Name

D1
D2

D3

1
1.1

1.2

Requirement Name
Requirement text ...
...
...
Requirement text ...

Object ID

DOORS Formal Module(s) with Requirements

DOORS Surrogate Module

Objects in a Simulink Model

Requirement

Enter requirements in the DOORS formal
module and link them to objects in the
DOORS surrogate module, so you can
navigate from requirements to Simulink
objects.

A surrogate module is a representation
of a Simulink model hierarchy.

When you synchronize a model for the first time, the DOORS software creates
the surrogate module that contains a representation of the model, depending
on your synchronization settings. (To customize the synchronization,
see“Customizing the Level of Detail in Synchronization” on page 3-19.)

If you create new links or remove existing links, you can resynchronize the
model. The new or updated surrogate module reflects any changes in the
requirements links since the previous synchronization.

3-13

3 Managing Requirements with DOORS® Software

Note The RMI and DOORS software both use the term object. In the RMI,
and in this document, the term object refers to a Simulink model or block, or
to a Stateflow diagram or its contents.

In the DOORS software, object refers to numbered elements in modules. The
DOORS software assigns each of these objects a unique object ID. In this
document, these objects are referred to as DOORS objects.

Advantages of Synchronization
Synchronizing your Simulink model with a surrogate module offers the
following advantages:

• You can navigate from a requirement to a Simulink object without
modifying the requirements modules.

• You avoid cluttering your requirements modules with inserted navigation
objects.

• The DOORS database contains complete information about requirements
links. You can review requirements links and verify traceability, even if
the Simulink software is not running.

• You can use DOORS reporting features to analyze requirements coverage.

• You can separate the work of the systems engineers in charge of
requirements tracking from the work of the Simulink model developers:

- Systems engineers can establish requirements links to models without
using the Simulink software.

- Model developers can capture the requirements information and store it
with the model.

• You can resynchronize a model with a new surrogate module, updating any
model changes, or specifying different synchronization options.

Synchronizing a Simulink Model to Create a
Surrogate Module
The first time that you synchronize your model with the DOORS software, the
surrogate module is created in the DOORS database.

3-14

Synchronizing a Simulink® Model to a DOORS® Surrogate Module

To synchronize the sf_car_doors model with the DOORS software:

1 Make sure that the DOORS software is running and that the Test Project
is open.

2 Open the sf_car_doors model used in the preceding examples.

3 In the Model Editor, select View > Model Explorer.

4 In the Model Explorer, select the Synchronize Requirements with DOORS

tool .

The DOORS settings dialog box opens.

5 For this exercise, accept all the default synchronization options. For more
information about the options, see“Customizing the Synchronization” on
page 3-16 .

6 Click Synchronize to create and open a surrogate module for all DOORS
requirements that have links to objects in the sf_car_doors model.

3-15

3 Managing Requirements with DOORS® Software

The surrogate module contains a DOORS object that is linked to the
transmission subsystem; the only object in the model with a requirement.
The red arrow indicates a link from the surrogate module object to the
requirement.

7 Save the surrogate module.

Customizing the Synchronization

• “DOORS Synchronization Settings” on page 3-17

• “Resynchronizing a Model with a Different Surrogate Module” on page 3-18

• “Customizing the Level of Detail in Synchronization” on page 3-19

• “Resynchronizing to Include All Simulink Objects” on page 3-20

• “Detailed Information About Surrogate Modules” on page 3-21

3-16

Synchronizing a Simulink® Model to a DOORS® Surrogate Module

DOORS Synchronization Settings

DOORS Settings Option Description

DOORS surrogate module path Names the surrogate module using
the Simulink model name.

Copy DOORS surrogate item
links to Simulink objects

Copies all links between the
surrogate module and the
requirements modules into the
Simulink model.

Note If you delete a requirement
link from the model only, and
then resynchronize the model, the
synchronization restores the link.
Delete the requirement links from
both the model and the surrogate
module so that resynchronization
does not restore the link.

Copy Simulink DOORS links to
DOORS surrogate items

Copies all links between Simulink
objects and requirements to the
surrogate module. The surrogate
module objects link to the same
requirements as their Simulink
objects.

Additional synchronization
objects

The default setting (None)
specifies to synchronize only those
Simulink objects that have linked
requirements. For more information
about the other synchronization
options, see“Customizing the Level
of Detail in Synchronization” on
page 3-19.

3-17

3 Managing Requirements with DOORS® Software

DOORS Settings Option Description

Save DOORS surrogate module
after synchronization

Saves all changes to the surrogate
module and changes the version of
the surrogate module in the DOORS
database.

Save Simulink model after
synchronization (recommended)

Saves all changes to the model. If
you use a version control system,
selecting this option changes the
version of the model.

Resynchronizing a Model with a Different Surrogate Module
To create a surrogate module that has more or less detail about the model
hierarchy, resynchronize a model with the same or new surrogate module.
In the DOORS settings dialog box, select the DOORS surrogate model
module path option to name the different surrogate module in the DOORS
database.

Specify a module with either a relative path (starting with ./) or a full path
(starting with /). The software appends relative paths to the current DOORS
project. Absolute paths must specify a project and a module name.

After you synchronize a model, the RMI automatically updates the DOORS
surrogate model module path field with the actual full path and saves the
unique module ID with the module.

If you select a new module path or if you have renamed the surrogate module,
and you click Synchronize, the Requirements: Surrogate Module Mismatch
dialog box opens.

3-18

Synchronizing a Simulink® Model to a DOORS® Surrogate Module

Click Continue to create a new surrogate module with the new path or name.

Customizing the Level of Detail in Synchronization
You can customize the level of detail in a surrogate module so that the module
reflects the full or partial Simulink model hierarchy.

In “Synchronizing a Simulink Model to Create a Surrogate Module” on page
3-14, you synchronized the model with the Additional synchronization
objects option set to None. As a result, the surrogate module contains only
Simulink objects that have requirement links. Additional synchronization
options, described in this section, can increase the level of surrogate
detail. However, increasing the level of surrogate detail can slow down
synchronization.

The Additional synchronization objects option can have one of the
following values. Each subsequent option adds additional Simulink objects
to the surrogate module. You choose None to minimize the surrogate size or
Complete to create a full representation of your model. The intermediate
options provide finer level of detail. The Complete option adds all Simulink
objects to the surrogate module, creating a one-to-one mapping of the
Simulink model in the surrogate module.

Drop-Down List Option Description

None (Recommended) Maps only Simulink objects that have requirements links
and their parent objects to the surrogate module.

Minimal - Nonempty unmasked
subsystems and Stateflow charts

Adds all nonempty Stateflow charts and unmasked
Simulink subsystems to the surrogate module.

3-19

3 Managing Requirements with DOORS® Software

Drop-Down List Option Description

Moderate - Unmasked subsystems,
Stateflow charts, and
superstates

Adds Stateflow superstates to the surrogate module.

Average Nontrivial Simulink
blocks, Stateflow charts and
states

Adds all Stateflow charts and states and Simulink
blocks, except for trivial blocks such as ports, bus objects,
and data-type converters, to the surrogate module.

Extensive - All unmasked
blocks, subsystems, states and
transitions

Adds all unmasked blocks, subsystems, states, and
transitions to the surrogate module.

Complete - All blocks,
subsystems, states and
transitions

Copies all blocks, subsystems, states, and transitions to
the surrogate module.

Resynchronizing to Include All Simulink Objects
To include all Simulink objects in the DOORS surrogate module:

1 Open the sf_car_doors model.

2 In the Model Editor, select Tools > Requirements > Synchronize with
DOORS.

The DOORS settings dialog box opens.

3 To resynchronize with the same surrogate module, make sure
that the DOORS surrogate module path option reads /Test
Project/sf_car_doors, which is the surrogate module that you created
in “Synchronizing a Simulink Model to Create a Surrogate Module” on
page 3-14.

4 To update the surrogate module to include all objects in your model, from
the drop-down list under Additional synchronization objects, select
Complete - All blocks, subsystems, states and transitions.

5 Click Synchronize.

3-20

Synchronizing a Simulink® Model to a DOORS® Surrogate Module

You see the DOORS surrogate module for the sf_car_doors model. All
Simulink objects and all Stateflow objects are now mapped in the surrogate
module.

6 Save the surrogate module.

Detailed Information About Surrogate Modules
Notice the following about the surrogate module in the preceding graphic:

3-21

3 Managing Requirements with DOORS® Software

• The name of the surrogate module is sf_car_doors, as you specified in the
Requirements settings dialog box.

• The left pane displays a node for each synchronized object in your model.

• The right pane displays a DOORS object for each Simulink object.

• Each Simulink object has a unique ID in the surrogate module. For
example, the ID for the surrogate module object associated with the Mux
block in the preceding figure is 11.

• The Block Type column identifies each object as a particular block or a
subsystem.

• If you delete a previously synchronized object from your model and then
resynchronize, the Block Deleted column reads true. Otherwise, it reads
false.

If you delete any DOORS object, explicitly purge it to remove the object
from the module. For information on how to purge an object, see the
DOORS documentation.

• In the previous exercises, before synchronization, you added the link
from the transmission object in sf_car_doors to the Transmission
Requirements requirement. In the surrogate module, the transmission
object retains its ID (2), but the transmission object appears farther down in
the module, in hierarchical order. The transmission object in the surrogate
module has a red arrow indicating that it links to a Simulink object.

Updating the Surrogate Module to Reflect Model
Changes
The RMI does not display a warning message if you change your model after
synchronization. If you want the surrogate module to reflect changes to the
Simulink model, resynchronize your model.

In the next example, you add a new block to the sf_car_doors model, and
later delete it, resynchronizing after both steps:

1 In the sf_car_doors model, make a copy of the vehicle mph (yellow) &
throttle % Scope block.

3-22

Synchronizing a Simulink® Model to a DOORS® Surrogate Module

�� �����!

2 Select Tools > Requirements > Synchronize with DOORS.

3 In the DOORS settings dialog box, leave the Additional synchronization
objects option set to Complete - All blocks, subsystems, states,
and transitions, and click Synchronize.

The software updates the surrogate module with the new block.

3-23

3 Managing Requirements with DOORS® Software

�������	
���
����

4 In the sf_car_doors model, delete the newly added Scope block and
resynchronize.

The block that you delete appears at the bottom of the list of objects in the
surrogate module, and its entry in the Block Deleted column reads True.

5 Right-click the object and select Delete to delete this entry from the
surrogate module.

3-24

Synchronizing a Simulink® Model to a DOORS® Surrogate Module

6 Save the surrogate module.

7 Save the sf_car_doors model.

Navigating Using the Surrogate Module

• “Navigating Between Requirements and the Surrogate Module in the
DOORS Database” on page 3-25

• “Two-Way Navigation Using the Surrogate Module” on page 3-26

Navigating Between Requirements and the Surrogate Module
in the DOORS Database
The requirements in the formal module and the surrogate module are both in
the DOORS database. You can review the requirements and the Simulink
objects in the surrogate module without starting the Simulink software. When
you synchronize your model, the DOORS software creates links between the
surrogate module objects and the requirements in the DOORS database.

To navigate from the surrogate module transmission object to the requirement
in the formal module:

1 In the surrogate module object for the transmission subsystem, right-click
the right-facing red arrow.

2 Select the requirement name.

The My Requirements module opens, scrolled to the Transmission
Requirements object.

To navigate from the requirement in the My Requirements module to the
surrogate module:

3-25

3 Managing Requirements with DOORS® Software

1 In the Transmission Requirements object in the My Requirements module,
right-click the left-facing orange arrow.

2 Select the object name.

The surrogate module for sf_car_doors opens, scrolled to the object
associated with the transmission subsystem.

Two-Way Navigation Using the Surrogate Module
If you synchronize your model, you can navigate between Simulink objects
and DOORS requirements using the surrogate module as an intermediary.

Navigating from a Simulink Object to a Requirement. To navigate
from the transmission subsystem in the sf_car_doors model to the linked
requirement in the My Requirements formal module:

1 In the sf_car_doors model, right-click the transmission subsystem and
select Requirements > 1. “DOORS Surrogate Item”.

The surrogate module opens, scrolled to the object associated with the
transmission subsystem.

2 To display the individual requirement, in the surrogate module, right-click
the right-facing red arrow and select the requirement.

The My Requirements module opens, scrolled to the Transmission
Requirements requirement.

Navigating from a Requirement to the Model. To navigate from the
Transmission Requirements object module to the transmission subsystem
in the sf_car_doors model:

3-26

Synchronizing a Simulink® Model to a DOORS® Surrogate Module

1 In the My Requirements module, in the Transmission Requirements
object, right-click the left-facing orange arrow.

2 In the surrogate module, select the path to the linked object: /Test
Project/sf_car_doors > 2. transmission.

The surrogate module opens, scrolled to the Transmission Requirements.

3 In the surrogate module, select the transmission object.

4 Select MATLAB > Select item.

The sf_car_doors model opens as follows:

• For a Simulink object, the Model Editor opens with that block or
subsystem, and all its parent blocks, highlighted.

• For a Stateflow object, the diagram containing the selected object opens
with the object highlighted.

3-27

3 Managing Requirements with DOORS® Software

Viewing Simulink Objects with Requirements

In this section...

“Viewing Objects with Requirements in the Model Editor” on page 3-28

“Viewing Objects with Requirements in the Model Explorer” on page 3-28

Viewing Objects with Requirements in the Model
Editor
RMI lets you easily distinguish Simulink objects with requirements from
objects without requirements.

To highlight Simulink objects with requirements using the Model Editor,
select Tools > Highlight model. The RMI software highlights all objects in
the model hierarchy that have associated requirements.

Viewing Objects with Requirements in the Model
Explorer
You can also highlight Simulink objects with requirements using the Model
Explorer:

1 In the Model Explorer, with the sf_cars_doors model open, select
View > Model Explorer.

In the Model Explorer window, in the Model Hierarchy pane, you see
the highlighted model.

2 In the Model Explorer, click the Display Objects with Linked Requirements

tool .

The Model Explorer displays only the transmission subsystem, which
you added a requirement to in “Linking Simulink Objects to DOORS
Requirements” on page 3-7.

3-28

Viewing Simulink® Objects with Requirements

3 Click the Highlight Items with Requirements on Model tool .

The sf_car_doors model highlights the transmission subsystem.

3-29

3 Managing Requirements with DOORS® Software

Creating Requirements Reports

In this section...

“About Requirements Reports” on page 3-30

“Creating a Default Requirements Report for a Model” on page 3-30

“Customizing a Requirements Report with Links to DOORS Requirements”
on page 3-31

About Requirements Reports
Requirements reports contain information about DOORS requirements and
their implementation in a Simulink model:

• The date the DOORS requirements module was last modified and by whom

• The number of links from the Simulink model to DOORS requirements
modules

• The details about links from Simulink objects to their linked DOORS
requirements

This section describes only those areas of the report that are specific to
DOORS requirements. For more detailed information about the RMI reports,
see “Creating a Requirements Report” on page 2-22.

Creating a Default Requirements Report for a Model
To create a requirements report for the sf_car_doors model:

1 Open the sf_car_doors model.

2 Select Tools > Requirements > Generate Report.

3 If the DOORS software is not running, you see the following dialog box.

3-30

Creating Requirements Reports

If you click Skip, the report does not include information about when you
last modified the DOORS requirement.

4 Start the DOORS software.

5 Click Retry to continue.

By default, the report has the file name requirements.html. RMI stores the
report under the MATLAB Current Folder.

Customizing a Requirements Report with Links to
DOORS Requirements
RMI uses the Simulink Report Generator software to generate the
requirements report. You can customize the report using the RMI, or you can
use the Simulink Report Generator software for advanced customization.

Customizing the Report Using the RMI
To customize the requirements report in the Model Editor:

1 Select Tools > Requirements > Settings.

The Requirements Settings dialog box opens.

2 Click the Report tab.

3-31

3 Managing Requirements with DOORS® Software

The options that you select in the Requirements Settings dialog box
determine the contents of the report.

Requirements Settings Report
Option

Description

Highlight the model before
generating report

Highlights the Simulink objects
with requirements in the Model
Editor before creating the report
and highlights them in the report.

Report objects with no links to
requirements

Lists Simulink objects that have no
requirements.

Use document index in
requirements tables where
possible

Uses a document ID instead of a
path name in the requirements
table, if ID is available.

3 Select the options that you want and click Close.

3-32

Creating Requirements Reports

Run the report to generate the requirements report for your model.

Customizing the Report Using the Simulink Report Generator
Software
If you have a license for the Simulink Report Generator software, you can
further modify the default requirements report.

To customize the requirements report, first start the Simulink Report
Generator software. At the MATLAB command prompt, enter the following
command:

setedit requirements

The Report Explorer dialog box opens the requirements report template that
the RMI uses when generating a requirements report. The report template
contains Simulink Report Generator components that define the structure
of the requirements report.

If you click a component in the middle pane, the options you can specify for
that component appear in the right-hand pane. For detailed information
about using a particular component to customize your report, at the bottom
of the right-hand pane, click Help.

In addition to the standard report components, Simulink Report Generator
provides RMI-specific components. These components insert information
about Simulink objects whether or not they have associated requirements:

• Missing Requirements Block Loop — Applies all child components to
blocks that have no requirements

• Missing Requirements System Loop— Applies all child components to
systems that have no requirements

• Requirements Block Loop — Applies all child components to block that
have requirements

• Requirements Documents Table— Inserts table that lists requirements
documents

• Requirements Signal Loop — Applies all child components to signal
groups with requirements

3-33

3 Managing Requirements with DOORS® Software

• Requirements Summary Table— Inserts property table listing blocks that
have requirements and requirements details

• Requirements System Loop — Applies all child components to systems
with requirements

• Requirements Table — Inserts table that lists system and subsystem
requirements

There are several ways you can customize the requirements report:

• Add or delete components.

• Move components up or down in the report hierarchy.

• Customize components to specify how the report presents certain
information.

For more information about customizing reports, see Simulink Report
Generator User’s Guide.

3-34

Creating Two-Way Links Between Requirements and Simulink® Objects

Creating Two-Way Links Between Requirements and
Simulink Objects

In this section...

“Creating Two-Way Links” on page 3-35

“Navigating Two-Way Links” on page 3-36

Creating Two-Way Links
Two-way links between Simulink objects and DOORS requirements allow you
to navigate from the model to the requirements and from the requirements
to the model.

Using this feature, the RMI inserts a link object into your requirements
module. To create two-way links without modifying your requirements
module, see “Synchronizing a Simulink Model to a DOORS Surrogate Module”
on page 3-12.

To create a two-way link between the transmission subsystem in
sf_car_doors and the Transmission Requirements requirement:

1 Open the sf_car_doors.mdl model.

2 In the DOORS formal module My Requirements, in the left pane, click the
Transmission Requirements node.

Note Always select the requirement node by clicking the requirement
name in the left pane. Do not use the up and down arrow keys on the
keyboard to select a requirement node.

3 In the Model Editor, right-click the transmission subsystem and select
Requirements > Add link to current DOORS object.

The RMI adds the link to the DOORS requirement. The DOORS software
inserts a link object below the Transmission Requirements object that

3-35

3 Managing Requirements with DOORS® Software

represents the link from the requirement to the transmission subsystem
in the sf_car_doors model.

4 Save the DOORS module.

5 Save the sf_car_doors model.

Navigating Two-Way Links
Once you create a two-way link, you can navigate in both directions between a
Simulink object and a DOORS requirement. For information about how to
navigate from the Simulink object to a requirement, see“Navigating from a

3-36

Creating Two-Way Links Between Requirements and Simulink® Objects

Simulink Object to a DOORS Requirement” on page 3-10 . The following
procedure describes how to navigate from a requirement to its linked
Simulink object.

To navigate the two-way link from the Transmission Requirements object
in the DOORS database to the transmission subsystem in the sf_car_doors
model:

1 In the My Requirements module window, in the left pane, select the
[Simulink reference: sf_car_doors/tranmission (SubSystem)]
subnode under the Transmission Requirements node.

2 Select MATLAB > Select item.

The sf_car_doors model highlights the transmission subsystem in the
Model Editor.

3-37

3 Managing Requirements with DOORS® Software

3-38

4

Managing Model
Verification Blocks

You use Model Verification blocks throughout your model to monitor
individual signals relative to limits that you impose on them. Use Model
Verification blocks in conjunction with the Verification Manager tool in the
Signal Builder block to carefully construct simulation tests for your model
from a single location.

• “Using Model Verification Blocks” on page 4-2

• “Using the Verification Manager” on page 4-7

• “Managing Verification Requirements” on page 4-24

4 Managing Model Verification Blocks

Using Model Verification Blocks
You use Model Verification blocks throughout your model to monitor its
signals. You can set a verification block to assert when its signal leaves the
specified limit or range. During simulation, when the signal crosses the limit,
the verification block can

• Stop simulation and bring immediate focus to that part of the model

• Report the limit encounter with a logical signal output of its own, which can
be true if the limit is not encountered and false if the limit is encountered

To see a complete list of all Model Verification blocks and references for
each, see the “Model Verification” category in the Simulink Block Reference
documentation.

In the following example, a Check Static Lower Bound verification block is
used to stop simulation when a signal from a Sine Wave block crosses its
lower bound limit:

1 Attach a Check Static Lower Bound verification block to the signal from a
Sine Wave block, as shown in the following schematic.

4-2

Using Model Verification Blocks

2 Set the model to run for 2 seconds while the Sine Wave block outputs a
signal with an amplitude of 1 and a frequency of pi radians per second.

3 Open the Check Static Lower Bound block and set the parameters as
follows:

A verification block is enabled for an assertion when the Enable assertion
check box is selected (this is the default setting). According to the preceding
property settings, the Check Static Lower Bound block is set to detect a
signal value of -0.8 or lower. If this signal is detected, simulation is stopped.

4 Run the simulation.

The model stops simulating after 1.295 seconds, when the output is -0.8,
as shown. This brings focus to the asserting verification block, which is
highlighted.

4-3

4 Managing Model Verification Blocks

The stop in simulation is also accompanied by the following status
diagnostic message.

4-4

Using Model Verification Blocks

5 You can disable the block from asserting its limit by clearing the Enable
assertion check box, which has the following effect on the block’s
appearance in the model.

4-5

4 Managing Model Verification Blocks

"����
��	�
������

4-6

Using the Verification Manager

Using the Verification Manager

In this section...

“What Is the Verification Manager?” on page 4-7

“Opening the Verification Manager” on page 4-7

“Enabling and Disabling Model Verification Blocks with the Verification
Manager” on page 4-15

“Using Enabling and Disabling Tools in the Verification Manager” on page
4-20

What Is the Verification Manager?
The Verification Manager is a graphical interface that appears in the Signal
Builder dialog box. The tool allows you to manage from a central location
all the Model Verification blocks in your model. The sections that follow
describe how to access the Verification Manager for the purpose of enabling or
disabling Model Verification blocks in a Simulink model.

Opening the Verification Manager
In this topic you create a Simulink model that you use to examine the
Verification Manager in the following steps:

1 Create the following example model in the Simulink software.

4-7

4 Managing Model Verification Blocks

Typically, a Signal Builder block provides test signals for an entire model
from one location. The example model contains a Signal Builder block
feeding five test signals to Model Verification blocks. Signals 1 through 4
are sent directly to Check Static Upper Bound Model Verification blocks.
The fifth signal is sent to a subsystem that contains a Check Static Upper
Bound verification block.

Each Check Static Upper Bound verification block is set to assert for an
upper bound of 1 (property Upper bound = 1). Blocks 1, 2, 3, and 5 appear

4-8

Using the Verification Manager

crossed out because they are disabled (property Enable assert is cleared).
Block 4 is enabled (property Enable assert is checked).

2 Double-click the Signal Builder block in the preceding model to open its
Signal Builder dialog box.

4-9

4 Managing Model Verification Blocks

�#� �$�������
��	���

�	��%���������
��
����	���

The Signal Builder dialog box displays tabbed pages for three groups of
signal values. Each group contains independent values for all five signals.

4-10

Using the Verification Manager

However, only a subset of the signals is displayed for each group. For
example, group1 displays signals 1 and 2. For more information on the
Signal Builder block, see “Working with Signal Groups” in the Simulink
documentation.

3 In the Signal Builder dialog toolbar, select the Show Verification Settings

tool .

The Verification block settings pane and the Requirements pane
appear as shown.

4-11

4 Managing Model Verification Blocks

&�������
��	���	�

���������	
����	�

4-12

Using the Verification Manager

By default, the Verification block settings pane lists all Model
Verification blocks for the model, grouped by subsystem. The
Requirements pane lists the requirements document links for the current
signal group. See “Managing Verification Requirements” on page 4-24 for
details on adding requirement document links in the Signal Builder dialog
box. For now, delete the Requirements pane in the next step.

4 Just above the Verification block settings pane, select to close the
Requirements pane.

4-13

4 Managing Model Verification Blocks

The example Verification block settings pane displays five Model
Verification blocks. Four are in the top level of the model, and one is in a
subsystem.

4-14

Using the Verification Manager

5 Select the List Enabled Verifications tool in the Verification block
settings toolbar.

The Verification block settings pane now shows only the enabled Model
Verification blocks for the current group, as shown.

6 Select the Show Verification Block Hierarchy tool to list all Model
Verification blocks for the current group again.

Enabling and Disabling Model Verification Blocks
with the Verification Manager
In this section you use the Verification Manager to selectively enable and
disable Model Verification blocks in group tests. In “Opening the Verification
Manager” on page 4-7, you open the Verification Manager in the Signal
Builder, as shown.

4-15

4 Managing Model Verification Blocks

The Verification block settings pane in the preceding example lists
the Model Verification blocks in the model. Each verification block has a
preceding status node that indicates whether its assertion is enabled or
disabled and whether that setting applies universally or to the active group.
The preceding status node can be one of the following.

4-16

Using the Verification Manager

Node Status

Verification block is disabled for this group. Click to enable
for current group.

Verification block is enabled for the current group. Click
to disable for current group.

Verification block is enabled for all test groups.

Use the Verification Manager to enable or disable model verification blocks in
the test_signals model you created in “Opening the Verification Manager”
on page 4-7, as follows:

1 In the Verification Manager, click the empty check box next to the Check
Static Upper Bound 2 node to enable it for the current group (group1).

Enabling a disabled block in the Verification block settings pane leads
to the following change in block appearance in the model.

4-17

4 Managing Model Verification Blocks

'������
���
��	����
��	������	
�������(�
����)

&�������
��	���	�����*��
����

Because it is enabled in the current group, the Check Static Upper Bound 2
block gains an Override label and loses its cross-out. The meaning behind
the change in appearance becomes clearer when another group is selected.

2 In the Signal Builder dialog box, select the group2 tab and click the empty
check box next to the Check Static Upper Bound 3 block to enable it for
the current group (group2).

4-18

Using the Verification Manager

'������
���
��	����
��	������	
�������(�
����)

&�������
��	���	�����*��
����

The Check Static Upper Bound 3 block loses its cross to indicate that it is
enabled for the current group. However, Check Static Upper Bound 2 gains
a cross because it is enabled in another group, but not this one.

The change in appearance of the Check Static Upper Bound blocks in the
preceding steps is exemplary of the change in appearance of every other Model
Verification block except the Assertion block. The change in appearance of the
Assertion block is summarized in the following table:

4-19

4 Managing Model Verification Blocks

Assertion
Block Description

Enabled for all groups

Disabled in current group

Enabled in current group

Using Enabling and Disabling Tools in the Verification
Manager
If you have many verification blocks, it is tedious to enable and disable blocks
individually. For this reason, the Verification Manager lets you enable and
disable blocks through selections from a context menu. These selections vary
with the node as follows:

Node Context Menu Selections

• Contents enable for all groups

• Contents enable by group

• Contents group enable

• Contents group disable

• Block enable by group

• Block enable for all groups

• Block group enable

• Block enable for all groups

• Block group disable

As an example, assume that the following groups are defined in the
Verification Manager for a model with five Model Verification blocks.

4-20

Using the Verification Manager

1 Right-click the test_signals node and select Contents enable for all
groups.

Applying the Contents enable for all groups selection to the model node
enables all contained Model Verification blocks, for all test groups, in all
contained subsystems.

2 Right-click test_signals and select Contents enable by group.

Applying the Contents enable by group selection to the model node
restores the previous individually enabled/disabled settings for each block
in each group.

3 Right-click test_signals and select Contents group enable.

4-21

4 Managing Model Verification Blocks

Applying Contents group enable to the test_signals model node in
group1 individually enables all contained blocks for group1, but leaves
the other groups untouched.

4 Right-click test_signals and select Contents group disable.

Applying Contents group disable to the test_signals model node in
group1 individually disables all contained blocks for group1, but leaves
the other groups untouched.

5 Right-click Check Static Upper Bound 1 and select Block enable for
all groups.

Applying Block enable for all groups to the individual group1 block
node for Check Static Upper Bound 1 in group1 enables this block for
all groups.

6 Right-click Check Static Upper Bound 1 and select Block enable by
group.

4-22

Using the Verification Manager

Applying Block enable by group to the individual group1 block node
for Check Static Upper Bound 1 in group1 restores the previous
individually enabled/disabled state to this block for all groups. This lets
you enable or disable this node individually for each group.

7 Right-click Check Static Upper Bound 1 and select Block group
enable.

Applying Block group enable to the individual group1 block node for
Check Static Upper Bound 1 in group1 enables this block for this group
only. This is equivalent to selecting the empty check box in group1 for
this node.

8 Right-click Check Static Upper Bound 1 and select Block group
disable.

Applying Block group disable to the individual block node for Check
Static Upper Bound 1 in group1 disables this block for this group only.
This is equivalent to clearing the check box for this node.

4-23

4 Managing Model Verification Blocks

Managing Verification Requirements
In “Using the Verification Manager” on page 4-7, you learn how to use the
Verification Manager to manage Model Verification blocks along with signal
group tests in a Simulink model. The combination of test groups and their
schedules of enabled and disabled Model Verification blocks is used to verify
the correct behavior for your Simulink model. In this section you learn how to
link the requirements to this combination that specify correct behavior.

You can link requirements documents to individual verification blocks just
as you can for any Simulink block. See for details on linking requirements
documents to individual Simulink blocks.

You can link requirements documents to test groups and their scheduled
Model Verification blocks through the Requirements pane of the Verification
Manager in the Signal Builder. By default, when you display the Verification
Manager in the Signal Builder window, the Requirements pane appears,
as shown.

4-24

Managing Verification Requirements

���������	
����	�

1 Right-click anywhere in the Requirements pane.

A pop-up menu appears.

4-25

4 Managing Model Verification Blocks

2 From the pop-up menu, select Edit/Add Links.

The Requirements dialog box appears, as shown.

You can also access the Requirements dialog box for a Signal
Builder block by right-clicking it in the Simulink model and selecting
Requirements > Edit/Add Links.

3 Add links to requirements documents as described in steps 4 through 9 of .

The descriptions for the links that you add appear in the Requirements
pane, as shown.

4-26

Managing Verification Requirements

�� ����������	
�

4 Right-click a requirement link and select View to view the requirements
document in its native editor.

4-27

4 Managing Model Verification Blocks

5 Right-click a requirement link and select Delete to delete it.

4-28

5

Using Model Coverage

Model coverage helps you validate your model tests by measuring how
thoroughly the model objects are tested. The following sections describe
Simulink Verification and Validation tools that measure and display model
coverage for the model.

• “Introduction to Model Coverage” on page 5-2

• “Analyzing Model Coverage” on page 5-11

• “Model Coverage Reporting Options” on page 5-16

• “Understanding Model Coverage Reports” on page 5-30

• “Colored Simulink Diagram Coverage Display” on page 5-69

• “Using Model Coverage Commands” on page 5-74

• “Using Model Coverage Commands for Referenced Models” on page 5-81

• “Model Coverage for Embedded MATLAB Function Blocks” on page 5-87

5 Using Model Coverage

Introduction to Model Coverage

In this section...

“What Is Model Coverage?” on page 5-2

“How Model Coverage Works” on page 5-2

“Simulink Optimizations and Model Coverage” on page 5-2

“Types of Model Coverage” on page 5-3

“Blocks That Receive Model Coverage” on page 5-8

What Is Model Coverage?
Model coverage determines how much a model test case exercises simulation
pathways through a model. The percentage of pathways that a test case
exercises is called model coverage. Model coverage is a measure of how
thoroughly a test tests a model. Model coverage helps you validate your
model tests.

How Model Coverage Works
Model coverage analyzes the execution of blocks that directly or indirectly
determine simulation pathways through your model. It can also analyze the
states and transitions of Stateflow charts in a model. During a simulation run,
the tool records the behavior of the covered blocks, states, and transitions.
At the end of the simulation, the tool reports the extent to which the run
exercised potential simulation pathways through each covered block.

Review the types of coverages that model coverage performs in “Types of
Model Coverage” on page 5-3. Then, for an example of a model coverage
report, see “Understanding Model Coverage Reports” on page 5-30.

Simulink Optimizations and Model Coverage
Two Simulink optimization parameters, in the Configuration Parameters
dialog box Optimization pane, can affect your model coverage data:

• “Block reduction” on page 5-3

5-2

Introduction to Model Coverage

• “Conditional input branch execution” on page 5-3

Block reduction
To achieve faster execution during model simulation and in generated code,
enable the Block reduction parameter on the Configuration Parameters
dialog box Optimization pane. The Simulink software collapses certain
groups of blocks into a single, more efficient block, or removes them entirely.

One of the model coverage options, Force block reduction off, allows you to
ignore the Block reduction parameter when collecting model coverage.

If you do not enable the Block reduction parameter, or if you select Force
block reduction off, the Simulink Verification and Validation software
provides coverage data for every block in the model that collects coverage.

If you enable the Block reduction parameter and do not set Force block
reduction off, the coverage report lists the reduced blocks that would have
collected coverage.

Conditional input branch execution
To improve model execution when the model contains Switch and Multiport
Switch blocks, enable Conditional input branch execution. If you select
this parameter, the simulation executes only blocks that are required to
compute the control input and the data input selected by the control input.

This optimization is limited to certain kinds of Switch blocks, as described in
“Optimizing Code for Switch Blocks” in the Real-Time Workshop User’s Guide.

For example, if your model has a Switch block with output flagged as a test
point, such as when a Scope block is attached, that Switch block is not
executed, and the model coverage data is incomplete. If you have a model
with Switch blocks and you want to ensure that the model coverage data is
complete, disable Conditional input branch execution.

Types of Model Coverage
Simulink Verification and Validation software can perform several types
of coverage analysis:

5-3

5 Using Model Coverage

• “Cyclomatic Complexity” on page 5-4

• “Decision Coverage (DC)” on page 5-4

• “Condition Coverage (CC)” on page 5-5

• “Modified Condition/Decision Coverage (MCDC)” on page 5-5

• “Lookup Table Coverage” on page 5-6

• “Signal Range Coverage” on page 5-7

• “Signal Size Coverage” on page 5-7

• “Simulink Design Verifier Coverage” on page 5-7

Cyclomatic Complexity
Cyclomatic complexity is a measure of the structural complexity of a model. It
approximates the McCabe complexity measure for code generated from the
model. The McCabe complexity measure is slightly higher due to error checks
that the model coverage analysis does not consider.

To compute the cyclomatic complexity of an object (such as a block, chart, or
state), model coverage uses the following formula:

c on

N
= −∑()1

1

N is the number of decision points that the object represents and on is
the number of outcomes for the nth decision point. The tool adds 1 to the
complexity number for atomic subsystems and Stateflow charts.

For an example of cyclomatic complexity data in a model coverage report, see
“Cyclomatic Complexity” on page 5-38.

Decision Coverage (DC)
Decision coverage analyzes elements that represent decision points in a
model, such as a Switch block or Stateflow states. For each item, decision
coverage determines the percentage of the total number of simulation paths
through the item that the simulation actually traversed.

5-4

Introduction to Model Coverage

For an example of decision coverage data in a model coverage report, see
“Decisions Analyzed” on page 5-39.

Condition Coverage (CC)
Condition coverage analyzes blocks that output the logical combination of
their inputs (for example, the Logic block) and Stateflow transitions. A test
case achieves full coverage if it causes each input to each instance of a logic
block in the model and each condition on a transition to be true at least
once during the simulation and false at least once during the simulation.
Condition coverage analysis reports whether the test case fully covered the
block for each block in the model.

When you collect coverage for a model, you may not be able to achieve 100%
condition coverage. For example, if you specify to short-circuit Logic blocks,
you might not be able to achieve 100% condition coverage for that block.
See “Treat Simulink Logic blocks as short-circuited” on page 5-28 for more
information.

For an example of condition coverage data in a model coverage report, see
“Conditions Analyzed” on page 5-41.

Modified Condition/Decision Coverage (MCDC)
Modified condition/decision coverage analysis by the Simulink Verification
and Validation software extends the decision and condition coverage
capabilities. It analyzes blocks that output the logical combination of their
inputs and Stateflow transitions to determine the extent to which the test
case tests the independence of logical block inputs and transition conditions.

• A test case achieves full coverage for a block when there is a pair of
simulation times, upon changing only that input, that causes a change in
each block’s output.

• A test case achieves full coverage for a transition when there is at least
one time when a change in the condition triggers the transition for each
condition.

Because the Simulink Verification and Validation MCDC coverage does not
guarantee full decision or condition coverage, you can achieve 100% MCDC
coverage without achieving 100% decision coverage.

5-5

5 Using Model Coverage

Some Simulink blocks support MCDC coverage, some blocks support only
condition coverage, and some blocks support only decision coverage. The table
“Blocks That Receive Model Coverage” on page 5-8 lists which blocks receive
which types of model coverage. For example, the Combinatorial Logic block
can receive decision coverage and condition coverage, but not MCDC coverage.

To achieve 100% MCDC coverage for your model, as defined by the DO-178B
standard, in the Coverage Settings dialog box, collect coverage for all of the
following coverage metrics:

• Condition Coverage

• Decision Coverage

• MCDC Coverage

When you collect coverage for a model, you may not be able to achieve 100%
MCDC coverage. For example, if you specify to short-circuit Logic blocks, you
may not be able to achieve 100% MCDC coverage for that block. See “Treat
Simulink Logic blocks as short-circuited” on page 5-28 for more information.

If you run the test cases independently and accumulate all the coverage
results, you can determine if your model adheres to the modified condition
and decision coverage standard.

For an example of MCDC coverage data in a model coverage report, see
“MCDC Analysis” on page 5-41. For an example of accumulated coverage
results, see “Cumulative Coverage ” on page 5-43.

For more information about the DO-178B standard, see “DO-178B Checks”
on page 14-4.

Lookup Table Coverage
Lookup table coverage (LUT) examines blocks, such as the Lookup Table
block, that output information from inputs in a table of inputs and outputs,
interpolating between or extrapolating from table entries. Lookup table
coverage records the frequency that table lookups use each interpolation
interval. A test case achieves full coverage when it executes each interpolation
and extrapolation interval at least once. For each lookup table block in

5-6

Introduction to Model Coverage

the model, the coverage report displays a colored map of the lookup table,
indicating where each interpolation was performed.

For an example of lookup table coverage data in a model coverage report, see
“N-Dimensional Lookup Table” on page 5-45.

Note Configure lookup table coverage only at the start of a simulation. If
you tune a parameter that affects lookup table coverage at run time, the
coverage settings for the affected block are not updated.

Signal Range Coverage
Signal range coverage records the minimum and maximum signal values at
each block in the model, as measured during simulation. Only blocks with
output signals receive signal range coverage.

For an example of signal range coverage data in a model coverage report, see
“Signal Range Analysis” on page 5-54.

Signal Size Coverage
Signal size coverage records the minimum, maximum, and allocated size for
all variable-size signals in a model. Only blocks with variable-size output
signals are included in the report.

For an example of signal size coverage data in a model coverage report, see
“Signal Size Coverage for Variable-Dimension Signals” on page 5-56.

For more information about variable-size signals, see “Working with
Variable-Size Signals”.

Simulink Design Verifier Coverage
The Simulink Verification and Validation software collects model coverage
data for the following Simulink® Design Verifier™ blocks:

• Test Condition

• Test Objective

5-7

5 Using Model Coverage

• Proof Assumption

• Proof Objective

If you do not have a Simulink Design Verifier license, you can collect model
coverage for a model that contains these blocks, but you cannot analyze the
model using the software.

By adding one or more of those Simulink Design Verifier blocks into your
model, you can:

• Check the results of a Simulink Design Verifier analysis by running
generated test cases, and use the blocks to observe the results.

• Define model requirements using the Test Objective block and verify
the results with model coverage data that the software collected during
simulation.

• Analyze the model, create a test harness, and then simulate the harness
with the Test Objective block to collect model coverage data.

• Analyze the model and use the Proof Assumption block to verify any
counterexamples that the Simulink Design Verifier identifies.

For an example of coverage data for Simulink Design Verifier blocks in a
model coverage report, see “Simulink® Design Verifier Block Coverage” on
page 5-58.

Blocks That Receive Model Coverage
Certain Simulink blocks can receive any type of model coverage. Other blocks
can only receive certain types of coverage, as the following table shows.

For Stateflow states, events, and state temporal logic decisions, model
coverage provides only decision coverage. For Stateflow transitions, model
coverage provides decision, condition, and MCDC coverage. For more
information, see “Understanding Model Coverage for Stateflow Charts” in
the Stateflow documentation.

5-8

Introduction to Model Coverage

Block Decision Condition MCDC LUT
Simulink Design
Verifier

Abs •

Combinatorial Logic • •

Direct Lookup Table (n-D) •

Discrete-Time Integrator
(when saturation limits are
enabled)

•

Embedded MATLAB
Function

• • •

Enabled and Triggered
Subsystem

• • •

Enabled Subsystem •

Fcn (Boolean operators
only)

•

For Iterator, For Iterator
Subsystem

•

If, If Action Subsystem •

Interpolation Using
Prelookup

•

Logical Operator • •

Lookup Table •

Lookup Table (2-D) •

Lookup Table (n-D) •

MinMax •

Model • • • •

Multiport Switch •

Proof Assumption •

Proof Objective •

5-9

5 Using Model Coverage

Block Decision Condition MCDC LUT
Simulink Design
Verifier

Rate Limiter •

(Relative
to slew
rates)

Relay •

Saturation •

Stateflow charts • • •

Switch •

Switch Case, Switch Case
Action Subsystem

•

Test Condition •

Test Objective •

Triggered Subsystem
• • •

While Iterator, While
Iterator Subsystem •

5-10

Analyzing Model Coverage

Analyzing Model Coverage

In this section...

“Model Coverage Analysis Workflow” on page 5-11

“Creating and Running Test Cases” on page 5-11

Model Coverage Analysis Workflow
To develop effective tests with model coverage:

1 Develop one or more test cases for your model. (See “Creating and Running
Test Cases” on page 5-11.)

2 Run the test cases to verify that the model behavior is correct.

3 Analyze the coverage reports produced by the Simulink Verification and
Validation software.

4 Using the information in the coverage reports, modify the test cases to
increase their coverage or add new test cases to cover areas not currently
covered.

5 Repeat the preceding steps until you are satisfied with the coverage of
your test set.

Note The Simulink Verification and Validation software comes with an
online demonstration of model coverage to validate model tests. To run the
demo, at the MATLAB prompt, enter simcovdemo.

Creating and Running Test Cases
To create and run test cases, model coverage provides two MATLAB
commands, cvtest and cvsim. The cvtest command creates test cases that
the cvsim command runs. (See “Creating Tests with cvtest” on page 5-74 and
“Running Tests with cvsim” on page 5-76.)

You can also run the coverage tool interactively:

5-11

5 Using Model Coverage

1 Open the fuelsys model.

2 In the Simulink model window, select Tools > Coverage Settings.

The Coverage Settings dialog box Coverage tab appears.

5-12

Analyzing Model Coverage

3 Select Coverage for this model, which enables:

• The Select Subsystem button

• The Coverage for External Embedded MATLAB files option

• The metrics options in the Coverage metrics section

• Fields on the other tabs of the Coverage Settings dialog box

5-13

5 Using Model Coverage

4 Under Coverage metrics, select the types of coverage that you want to
record in the coverage report.

For a complete description of all coverage options in the Coverage Settings
dialog box, see “Model Coverage Reporting Options” on page 5-16.

5-14

Analyzing Model Coverage

5 Click OK.

6 In the Simulink model window, select Start > Simulation or on the
Simulink toolbar, click the Start button to start simulating the model.

If you specify to report model coverage, the Simulink Verification
and Validation software saves coverage data for the current run
in the workspace object covdata and cumulative coverage data in
covCumulativeData, by default. At the end of the simulation, this data
appears in an HTML report that opens in a browser window.

Note You cannot run simulations if you select both model coverage
reporting and acceleration options. The Simulink Verification and
Validation software clears the model coverage reporting option if you select
acceleration mode.

You cannot select both block reduction and conditional branch input
optimization when you perform coverage analysis because they interfere
with coverage recording.

5-15

5 Using Model Coverage

Model Coverage Reporting Options

In this section...

“Coverage Settings Dialog Box” on page 5-16

“Coverage Tab” on page 5-18

“Results Tab” on page 5-21

“Report Tab” on page 5-23

“Options Tab” on page 5-27

Coverage Settings Dialog Box
Before starting a model coverage analysis, you must specify model coverage
reporting options. In a Simulink model window, select Tools > Coverage
Settings. The Coverage Settings dialog box opens, with the Coverage tab
displayed.

5-16

Model Coverage Reporting Options

The following sections describe the settings for each tab of the Coverage
Settings dialog box.

5-17

5 Using Model Coverage

Coverage Tab
On the Coverage tab, select the model coverages calculated during
simulation.

Coverage for this model
Instructs the software to gather and report the model coverages that you
specify during simulation. When you select the Coverage for this model
option, the Select Subsystem button and the Coverage metrics section of
the Coverage pane become available.

Select Subsystem
Specifies the subsystem for which the software gathers and reports coverage
data. When you select the Coverage for this model option, the software, by
default, generates coverage data for the entire model.

To restrict coverage reporting to a particular subsystem:

1 On the Coverage tab, click Select Subsystem.

The System Selector dialog box appears.

5-18

Model Coverage Reporting Options

2 In the System Selector dialog box, select the subsystem for which you want
to enable coverage reporting and click OK.

Coverage for referenced models
Causes the software to gather and report the model coverages that you specify
for referenced models during simulation. When you select the Coverage for
referenced models option, the Select Models button and the Coverage
metrics section of the Coverage tab become available.

Select Models
Specifies the referenced models for which the Simulink Verification and
Validation software gathers and reports coverage data. When you select
Coverage for referenced models , the software, by default, generates
coverage data for all referenced models.

To enable coverage reporting for particular referenced models:

1 On the Coverage pane, click Select Models.

5-19

5 Using Model Coverage

2 In the Select Models for Coverage Analysis dialog box, select the referenced
models for which you want coverage reporting and then click OK.

Note The Simulink Verification and Validation software provides model
coverage support only for referenced models that operate in Normal mode.
The software cannot record coverage for Model blocks whose Simulation
mode parameter specifies Accelerator.

Coverage for External Embedded MATLAB Files
Enables coverage for any external M-file functions that Embedded MATLAB™
functions call in your model. The Embedded MATLAB functions may be
defined in an Embedded MATLAB Function block or in a Stateflow chart.

5-20

Model Coverage Reporting Options

You must select either Coverage for this model or Coverage for
referenced models to select the Coverage for External Embedded
MATLAB Files option.

Coverage metrics
Select the types of test case coverage analysis that you want the tool
to perform (see “Types of Model Coverage” on page 5-3). The Simulink
Verification and Validation software gathers and reports those types of
coverage for the subsystem, model, and referenced models .

Note To specify different types of coverage analysis for each of the referenced
models in a hierarchy, use the cv.cvtestgroup and cvsimref functions. For
more information, see “Using Model Coverage Commands for Referenced
Models” on page 5-81.

Results Tab
On the Results pane, select the destination for model coverage results.

5-21

5 Using Model Coverage

Save Cumulative Results in Workspace Variable
Causes model coverage to accumulate and save the results of successive
simulations in the workspace variable that you specify in the cvdata object
name field.

Save Last Run in Workspace Variable
Causes model coverage to save the results of the last simulation run in the
workspace variable that you specify in the cvdata object name field below.

Increment Variable Name with Each Simulation
Causes the Simulink Verification and Validation software to increment the
name of the coverage data object variable used to save the last run with
each simulation, so that the current simulation run does not overwrite the
results of the previous run.

5-22

Model Coverage Reporting Options

Update Results on Pause
Causes the model coverage results to be recorded up to the point at which
you pause the simulation for the first time. When you resume simulation
and later pause or stop, the model coverage report reappears, with coverage
results up to the current pause or stop time.

Display Coverage Results Using Model Coloring
Causes coloring of Simulink blocks according to their level of model coverage,
after simulation. Blocks highlighted in light green received full coverage
during testing. Blocks highlighted in light red received incomplete coverage.
See “Colored Simulink Diagram Coverage Display” on page 5-69.

Report Tab
On the Report tab, specify whether the model coverage tool should generate
an HTML report and what data the report should include.

5-23

5 Using Model Coverage

Generate HTML Report
Causes the Simulink Verification and Validation software to create an HTML
report containing the coverage data. At the end of the simulation, the report
appears in the MATLAB Web browser. Click the Settings button to select
various reporting options.

Settings
On the Report tab, click Settings to open the HTML Settings dialog box. In
the HTML Settings dialog box, choose model coverage report options.

5-24

Model Coverage Reporting Options

Option Description

Include each test in the model
summary

The model hierarchy table at the
top of the HTML report includes
columns listing the coverage metrics
for each test. If you do not select this
option, the model summary reports
only the total coverage.

Produce bar graphs in the model
summary

Causes the model summary to
include a bar graph for each coverage
result for a visual representation of
the coverage.

Use two color bar graphs (red,
blue)

Red and blue bar graphs appear
in the report instead of black and
white.

Display hit/count ratio in the
model summary

Reports coverage numbers as both a
percentage and a ratio, for example,
67% (8/12).

5-25

5 Using Model Coverage

Option Description

Do not report fully covered
model objects

The coverage report includes only
model objects that the simulation
does not cover fully, useful when
developing tests, because it reduces
the size of the generated reports.

Include cyclomatic complexity
numbers in summary

Includes the cyclomatic complexity
(see “Types of Model Coverage”
on page 5-3) of the model and its
top-level subsystems and charts in
the report summary. A cyclomatic
complexity number shown in
boldface indicates that the analysis
considered the subsystem itself
to be an object when computing
its complexity. This occurs for
atomic and conditionally executed
subsystems as well as for Stateflow
Chart blocks.

Include cyclomatic complexity
numbers in block details

Includes the cyclomatic complexity
metric in the block details section of
the report.

Filter Stateflow events from
report

Excludes coverage data on Stateflow
events.

Cumulative Runs
Display the coverage results from successive simulations in the report. For
more information, see “Save Cumulative Results in Workspace Variable”
on page 5-22.

If you select the Save cumulative results in workspace variable check
box on the Results tab, a coverage running total is updated with new results
at the end of each simulation. However, if you change model or block settings
between simulations that are incompatible with settings from previous
simulations and affect the type or number of coverage points, the cumulative
coverage resets.

5-26

Model Coverage Reporting Options

You can make cumulative coverage results persist between MATLAB sessions
by using cvsave to save results to a file at the end of the session and cvload
to load the results at the beginning of the session. The cvload parameter
RESTORETOTAL must be 1 in order to restore cumulative results.

When you save the coverage results to a file using cvsave and a model name
argument, the file also contains the cumulative running total. When you load
that file into the coverage tool using cvload, you can select whether you want
to restore the running total from the file.

When you restore a running total from saved data, the saved results are
reflected in the next cumulative report. If a running total already exists when
you restore a saved value, the existing value is overwritten.

Whenever you report on more than one single simulation, the coverage
displayed for truth tables and lookup-table maps is based on the total
coverage of all the reported runs. For cumulative reports, this includes all the
simulations where cumulative results are stored.

You can also calculate cumulative coverage results at the command line
through the + operator:

covdata1 = cvsim(test1);
covdata2 = cvsim(test2);
cvhtml('cumulative_report', covdata + covdata2);

Last run
Include only the results of the most recent simulation run in the report.

Additional data to include in report
Specify names of coverage data from previous runs to include in the current
report along with the current coverage data. Each entry creates a new set of
columns in the report.

Options Tab
On the Options tab, select options for model coverage reports.

5-27

5 Using Model Coverage

Treat Simulink Logic blocks as short-circuited
The Treat Simulink Logic blocks as short-circuited option applies only
to condition and MCDC coverage. If you select this option, coverage analysis
treats Simulink Logic blocks as if the block ignores remaining inputs when
the previous inputs alone determine the block’s output. For example, if the
first input to a Logical Operator block whose Operator parameter specifies
AND is false, MCDC coverage analysis ignores the values of the other inputs
when determining MCDC coverage for a test case.

5-28

Model Coverage Reporting Options

If you enable this feature and Logic blocks are short-circuited while collecting
model coverage, you may not be able to achieve 100% coverage for that block.

Select this option to generate code from a model and where you want the
MCDC coverage analysis to approximate the degree of coverage that your test
cases achieve for the generated code (most high-level languages short-circuit
logic expressions).

Note A test case that does not achieve full MCDC coverage for
non-short-circuited logic expressions might achieve full coverage for
short-circuited expressions.

Warn when unsupported blocks exist in model
Select this option to warn you at the end of the simulation that the model
contains blocks that require coverage analysis but are not currently covered
by the tool.

Force block reduction off
To achieve faster execution during model simulation and in generated code,
enable the Block reduction parameter on the Configuration Parameters
dialog box Optimization pane. The Simulink software collapses certain
groups of blocks into a single, more efficient block, or removes them entirely.

One of the model coverage options, Force block reduction off, allows you to
ignore the Block reduction parameter when collecting model coverage.

If you do not enable the Block reduction parameter, or if you select Force
block reduction off, the Simulink Verification and Validation software
provides coverage data for every block in the model that collects coverage.

If you enable the Block reduction parameter and do not set Force block
reduction off, the coverage report lists the reduced blocks that would have
collected coverage.

The model coverage report identifies any reduced blocks. For an example of a
reduced blocks report, see “Block Reduction” on page 5-52.

5-29

5 Using Model Coverage

Understanding Model Coverage Reports

In this section...

“Types of Coverage Reports” on page 5-30

“Model Coverage Reports” on page 5-31

“Model Summary Reports” on page 5-61

“Model Reference Coverage Reports” on page 5-62

“External M-File Coverage Reports” on page 5-62

“Subsystem Coverage Reports” on page 5-66

Types of Coverage Reports
In the Coverage Settings dialog box, on the Report tab, if you select the
Generate HTML report option, the Simulink Verification and Validation
software creates one or more model coverage reports after a simulation.

Report Type Description HTML Report File Name

“Model Coverage Reports” on page
5-31

Provides coverage
information for all model
elements, including the
model itself.

model_name_cov.html

“Model Summary Reports” on page
5-61

Provides links to coverage
results for all referenced
models and external M-files
in the model hierarchy.
Created when the top-level
model includes Model blocks
or calls one or more external
M-files.

model_name
_summary_cov.html

“Model Reference Coverage
Reports” on page 5-62

Created for each referenced
model in the model
hierarchy; has the same
format as the model
coverage report.

reference_model_name
_cov.html

5-30

Understanding Model Coverage Reports

Report Type Description HTML Report File Name

“External M-File Coverage Reports”
on page 5-62

Provides detailed coverage
information about any
external M-file that the
model calls. There is one
report for each M-file called.

M-file_name_cov.html

“Subsystem Coverage Reports” on
page 5-66

Model coverage report
includes only coverage
results for the subsystem, if
you select one.

model_name_cov.html;
model_name is the name of
the top-level model

Model Coverage Reports
The Simulink Verification and Validation software always creates a model
coverage report for the top-level model named model_name_cov.html. The
model coverage report contains several sections:

• “Coverage Summary” on page 5-32

• “Details” on page 5-33

• “Cyclomatic Complexity” on page 5-38

• “Decisions Analyzed” on page 5-39

• “Conditions Analyzed” on page 5-41

• “MCDC Analysis” on page 5-41

• “Cumulative Coverage ” on page 5-43

• “N-Dimensional Lookup Table” on page 5-45

• “Block Reduction” on page 5-52

• “Signal Range Analysis” on page 5-54

• “Signal Size Coverage for Variable-Dimension Signals” on page 5-56

• “Simulink® Design Verifier Block Coverage” on page 5-58

5-31

5 Using Model Coverage

Coverage Summary
The coverage summary section contains basic information about the model
being analyzed:

• Model Information

• Simulation Optimization Options

• Coverage Options

The coverage summary has two subsections:

• Tests— The simulation start and stop time of each test case and any setup
commands that preceded the simulation. The heading for each test case
includes any test case label specified using the cvtest command.

• Summary— Summaries of the subsystem results. To see detailed results
for a specific subsystem, in the Summary subsection, click the subsystem
name.

5-32

Understanding Model Coverage Reports

Details
The Details section reports the detailed model coverage results. Each section
of the detailed report summarizes the results for the metrics that test each
object in the model:

5-33

5 Using Model Coverage

• “Model Details” on page 5-34

• “Subsystem Details” on page 5-35

• “Block Details” on page 5-36

• “Chart Details” on page 5-36

• “Embedded MATLAB Function Details” on page 5-37

You can also access a model element Details subsection as follows:

1 Right-click a Simulink element.

2 In the context menu, select Coverage > Report.

Model Details. The Details section contains a results summary for the
model as a whole, followed by a list of elements. Click the model element
name to see its coverage results.

The following graphic shows the Details section for the fuelsys model.

5-34

Understanding Model Coverage Reports

Subsystem Details. Each subsystem Details section contains a summary
of the test coverage results for the subsystem and a list of the subsystems
it contains. The overview is followed by sections for blocks, charts, and
Embedded MATLAB functions, one for each object that contains a decision
point in the subsystem.

The following graphic shows the coverage results for the EGO sensor
subsystem in the fuelsys model.

5-35

5 Using Model Coverage

Block Details. The following graphic shows the coverage results for the
Switch block in the EGO sensor subsystem of the fuelsys model.

Chart Details. The following graphic shows the coverage results for the
Stateflow chart, Chart2, in the mExternalMfile model.

5-36

Understanding Model Coverage Reports

For more information about model coverage reports for Stateflow charts and
their objects, see “Understanding Model Coverage for Stateflow Charts” in
the Stateflow documentation.

Embedded MATLAB Function Details. The following graphic shows
coverage results for the lib_em2 function call in the Chart2 Stateflow chart of
the mExternalMfile model.

5-37

5 Using Model Coverage

For more information about coverage for Embedded MATLAB functions, see
“Model Coverage for Embedded MATLAB Function Blocks” on page 5-87.

Cyclomatic Complexity
You can specify that the model coverage report include cyclomatic complexity
numbers in two locations in the report:

• The Summary section contains the cyclomatic complexity numbers for
each object in the model hierarchy. For a subsystem or Stateflow chart,
that number includes the cyclomatic complexity numbers for all their
descendants.

• The Details sections for each object list the cyclomatic complexity numbers
for all individual objects.

5-38

Understanding Model Coverage Reports

Decisions Analyzed
The Decisions analyzed table lists possible outcomes for a decision and the
number of times that an outcome occurred in each test simulation. Outcomes
that did not occur are in red highlighted table rows.

The following graphic shows the Decisions analyzed table for the Switch
Control block in the EGO sensor subsystem of the fuelsys model.

5-39

5 Using Model Coverage

To display and highlight the block in question, click the block name associated
with the Decisions analyzed table, as in this example from the fuelsys model.

The next graphic shows the Decisions analyzed table for the lib_em2 function
call in Chart2 of the MexternalMfile model.

5-40

Understanding Model Coverage Reports

Conditions Analyzed
The Conditions analyzed table lists the number of occurrences of true and
false conditions on each input port of the corresponding block.

MCDC Analysis
The MC/DC analysis table lists the MCDC input condition cases represented
by the corresponding block and the extent to which the reported test cases
cover the condition cases.

Each row of the MC/DC analysis table represents a condition case for a
particular input to the block. A condition case for input n of a block is a
combination of input values. Input n is called the deciding input of the
condition case. Changing the value of input n alone changes the value of
the block’s output.

5-41

5 Using Model Coverage

The MC/DC analysis table shows a condition case expression to represent a
condition case. A condition case expression is a character string where:

• The position of a character in the string corresponds to the input port
number.

• The character at the position represents the value of the input. (T means
true; F means false).

• A boldface character corresponds to the value of the deciding input.

For example, FTF represents a condition case for a three-input block where
the second input is the deciding input.

The Decision/Condition column specifies the deciding input for an input
condition case. The #1 True Out column specifies the deciding input value
that causes the block to output a true value for a condition case. The #1 True
Out entry uses a condition case expression, for example, FF, to express the
values of all the inputs to the block, with the value of the deciding variable
in bold.

Parentheses around the expression indicate that the specified combination of
inputs did not occur during the first (or only) test case included in this report.
In other words, the test case did not cover the corresponding condition case.
The #1 False Out column specifies the deciding input value that causes the
block to output a false value and whether the value actually occurred during
the first (or only) test case included in the report.

If you select Treat Simulink Logic blocks as short-circuited in the
Coverage Settings dialog box (see “Model Coverage Reporting Options” on
page 5-16), MC/DC coverage analysis does not verify whether short-circuited
inputs actually occur. The MC/DC analysis table uses an x in a condition
expression (for example, TFxxx) to indicate short-circuited inputs that were
not analyzed by the tool.

If you enable this feature and Logic blocks are short-circuited while collecting
model coverage, you may not be able to achieve 100% coverage for that block.

Navigation Arrows. The section for each block contains a backward and
a forward arrow. Click the forward arrow to go to the next section in the

5-42

Understanding Model Coverage Reports

report that lists an uncovered outcome. Click the back arrow to return to the
previous uncovered outcome in the report.

Cumulative Coverage
On the Results tab, if you select Save cumulative results in workspace
variable and on the Report tab, Cumulative runs, the results of each
simulation are saved and recorded in the report.

In a cumulative coverage report, the results located in the right-most area in
all tables reflect the running total value. The report is organized so that you
can easily compare the additional coverage from the most recent run with the
coverage from all prior runs in the session.

A cumulative coverage report contains information about:

• Current Run — The coverage results of the simulation just completed.

• Delta — Percentage of coverage added to the cumulative coverage achieved
with the simulation just completed. If the previous simulation’s cumulative
coverage and the current coverage are nonzero, the delta may be 0 if the
new coverage does not add to the cumulative coverage.

• Cumulative — The total coverage collected for the model up to, but not
including, the simulation just completed.

After running three test cases for the slvnv_autopilot_test_harnessmodel,
the Summary report shows how much additional coverage the third test case
achieved and the cumulative coverage achieved for the first two test cases.

5-43

5 Using Model Coverage

The Decisions analyzed table for cumulative coverage contains three columns
of data about decision outcomes that represent the current run, the delta
since the last run, and the cumulative data, respectively.

The Conditions analyzed table uses column headers #n T and #n F to indicate
results for individual test cases. The table uses Tot T and Tot F for the
cumulative results. You can identify the true and false conditions on each
input port of the corresponding block for each test case.

5-44

Understanding Model Coverage Reports

The MC/DC analysis #n True Out and #n False Out columns show the
condition cases for each test case. The Total Out T and Total Out F column
show the cumulative results.

N-Dimensional Lookup Table
The following interactive chart summarizes the extent to which elements of a
lookup table are accessed. In this example, two Sine Wave blocks generate
x and y indices that access a Lookup Table (n-D) block of 10-by-10 elements
filled with random values.

5-45

5 Using Model Coverage

In this example, table indices are 1, 2,..., 10 in each direction. The Sine Wave
2 block is out of phase with the Sine Wave 1 block by pi/2 radians. This
generates x and y numbers for the edge of a circle, which you see when you
examine the resulting Lookup Table coverage.

5-46

Understanding Model Coverage Reports

The report contains a two-dimensional table representing the elements of the
lookup table. The element indices are represented by the cell border grid
lines, which number 10 in each dimension. Areas where the lookup table
interpolates between table values are represented by the cell areas. Areas
of extrapolation left of element 1 and right of element 10 are represented by
cells at the edge of the table, which have no outside border.

The number of values interpolated (or extrapolated) for each cell (execution
counts) during testing is represented by a shade of green assigned to the
cell. Each of six levels of green shading and the range of execution counts
represented are displayed on one side of the table.

5-47

5 Using Model Coverage

If you click an individual table cell, you see a dialog box that displays the index
location of the cell and the exact number of execution counts generated for it
during testing. The following example shows the contents of a color-shaded
cell on the right edge of the circle.

The selected cell is outlined in red. You can also click the extrapolation cells
on the edge of the table.

A bold grid line indicates that at least one block input equal to its exact index
value occurred during the simulation. Click the border to display the exact
number of hits for that index value.

5-48

Understanding Model Coverage Reports

The following example model uses a Lookup Table (n-D) block of 10-by-10-by-5
elements filled with random values.

Both the x and y table axes have the indices 1, 2,..., 10. The z axis has the
indices 10, 20,..., 50. Lookup table values are accessed with x and y indices
that the two Sine Wave blocks generated, in the preceding example, and a z
index that a Ramp block generates.

After simulation, you see the following lookup table report.

5-49

5 Using Model Coverage

Instead of a two-dimensional table, you see the link Force Map Generation ,
which displays the following tables

5-50

Understanding Model Coverage Reports

Lookup table coverage for a three-dimensional lookup table block is reported
as a set of two-dimensional tables.

The vertical bars represent the exact z index values: 10, 20, 30, 40, 50. If a
vertical bar is bold, this indicates that at least one block input was equal to
the exact index value it represents during the simulation. Click a bar to get a
coverage report for the exact index value that bar represents.

5-51

5 Using Model Coverage

You can report lookup table coverage for lookup tables of any dimension.
Coverage for four-dimensional tables is reported as sets of three-dimensional
sets, like those in the preceding example. Five-dimensional tables are
reported as sets of sets of three-dimensional sets, and so on.

Block Reduction
All model coverage reports indicate the status of the Simulink Block
reduction parameter at the beginning of the report. In the following
example, you set Force block reduction off.

In the next example, you enabled the Simulink Block reduction parameter,
and you did not set Force block reduction off.

Consider the following model where the simulation does not execute the
MinMax1 block because there is only one input—the constant 3.

5-52

Understanding Model Coverage Reports

If you set Force block reduction off, the report contains no coverage data
for this block because the minimum input to the MinMax1 block is always 1

5-53

5 Using Model Coverage

If you do not set Force block reduction off, the report contains no coverage
data for reduced blocks.

Signal Range Analysis
If you select Signal Range Coverage, the software creates a Signal Range
Analysis section at the bottom of the model coverage report. This section
lists the maximum and minimum signal values for each output signal in the
model measured during simulation.

Access the Signal Range Analysis report quickly with the Signal Ranges
link in the nonscrolling region at the top of the model coverage report, as
shown for the fuelsys model.

5-54

Understanding Model Coverage Reports

Each block is reported in hierarchical fashion; child blocks appear directly
under parent blocks. Each block name in the Signal Ranges report is a link.
For example, select the EGO sensor link to display this block highlighted
in its native diagram.

Select the SwitchControl link to display this block in its own subsystem by
looking under the mask for EGO sensor.

5-55

5 Using Model Coverage

Signal Size Coverage for Variable-Dimension Signals
If you select Signal Size Coverage, the software creates a Variable Signal
Widths section after the Signal Ranges data in the model coverage report.
This section lists the maximum and minimum signal sizes for all output ports
in the model that have variable-size signals. It also lists the memory that
Simulink allocated for that signal, as measured during simulation. This list
does not include signals whose size does not vary during simulation.

The following example shows the Variable Signal Widths section in a coverage
report.

5-56

Understanding Model Coverage Reports

Each block is reported in hierarchical fashion; child blocks appear directly
under parent blocks. Each block name in the Variable Signal Widths list
is a link.

In this example, the Abs block signal size varied from 2 to 5, with an allocation
of 5. Click the Abs link in the report. The Model Editor becomes current,
with the Abs block highlighted.

5-57

5 Using Model Coverage

After the analysis, the variable-size signals have a wider line design. double
(5) in this example indicates the data type and allocation for that signal.

Simulink Design Verifier Block Coverage
If you select Simulink Design Verifier, the analysis collects coverage data
for all Simulink Design Verifier blocks in your model.

For an example of how this works, consider the
sldvdemo_debounce_testobjblks model.

5-58

Understanding Model Coverage Reports

This model contains two Test Objective blocks:

• The True block defines a property that the signal have a value of 2.

• The Edge block, in the Masked Objective subsystem, describes the property
where the output of the AND block in the Masked Objective subsystem
changes from 2 to 1.

5-59

5 Using Model Coverage

The Simulink Design Verifier software analyzes this model and produces a
harness model that contains test cases that achieve certain test objectives.
To see if the original model achieves those objectives, simulate the harness
model and collect model coverage data. The model coverage tool analyzes
any decision points or values within an interval that you specify in the Test
Objective block.

In this example, the coverage report shows that you achieved 100% coverage
of the True block because the signal value was 2 at least once. The signal
value was 2 in 6 out of 14 time steps.

The input signal to the Edge block achieved a value of True once out of 14
time steps.

5-60

Understanding Model Coverage Reports

Model Summary Reports
If the top-level model contains Model blocks or calls external M-files,
the software creates a model summary coverage report named
model_name_summary_cov.html. The title of this report is Coverage by
Model.

The summary report lists and provides links to coverage reports for all Model
block referenced models and external M-files called by Embedded MATLAB
code in the model. For more information, see “Model Reference Coverage
Reports” on page 5-62 and “External M-File Coverage Reports” on page 5-62.

The following graphic shows an example of a model summary report. It
contains links to the model coverage report (mExternalMfile), a report for the
Model block (mExternalMfileRef), and three external M-files called from the
model (externalmfile,I externalmfile1, andexternalmfile2).

5-61

5 Using Model Coverage

Model Reference Coverage Reports
If your top-level model references a model in a Model block, the software
creates a separate report, named reference_model_name_cov.html, that
includes coverage for the referenced model. This report has the same format
as the “Model Coverage Reports” on page 5-31. Coverage results are recorded
as if the referenced model was a standalone model; the report gives no
indication that the model is referenced in a Model block.

External M-File Coverage Reports
If your top-level model calls any external M-files, the software creates a
report, named M-file_name_cov.html, for each distinct M-file called from the
model. If there are several calls to a given M-file from the model, the software
creates only one report for that M-file, but it accumulates coverage from all
the calls to the M-file. The external M-file coverage report does not include
information about what parts of the model call the external M-file.

5-62

Understanding Model Coverage Reports

The first section of the external M-file coverage report contains summary
information similar to the model coverage report.

The Details section reports coverage for the external M-file and the function
in that M-file.

5-63

5 Using Model Coverage

The Details section also lists the content of the M-file, highlighting the code
lines that have decision points or function definitions.

5-64

Understanding Model Coverage Reports

Coverage results for each of the highlighted code lines follow in the report.
The following graphic shows a portion of these coverage results from the
preceding code example.

5-65

5 Using Model Coverage

Subsystem Coverage Reports
In the Coverage Settings dialog box, when you select Coverage for this
model, you can click Select Subsystem to request coverage for only the
selected subsystem in the model. The software creates a model coverage report
for the top-level model, but includes coverage results only for the subsystem.

However, if the top-level model calls any external M-files and you selected
Coverage for External Embedded MATLAB files in the Coverage
Settings dialog box, the results include coverage for all external M-files called
from:

• The subsystem for which you are recording coverage

• The top-level model that includes the subsystem

For example, in the fuelsys model, you click Select Subsystem, and select
coverage for the EGO sensor subsystem.

5-66

Understanding Model Coverage Reports

The report is similar to the model coverage report, except that it includes only
results for the EGO sensor subsystem and its contents.

5-67

5 Using Model Coverage

5-68

Colored Simulink® Diagram Coverage Display

Colored Simulink Diagram Coverage Display

In this section...

“How Model Coverage Highlighting Works” on page 5-69

“Enabling the Colored Diagram Display” on page 5-69

“Displaying Model Coverage with Model Coloring” on page 5-70

“Accessing Coverage Information for Colored Blocks” on page 5-72

How Model Coverage Highlighting Works
The Simulink Verification and Validation software displays model coverage
results for individual blocks directly in Simulink diagrams. If you enable
model coverage, the tool:

• Highlights (colors) blocks that have received model coverage during
simulation

• Provides a context-sensitive display of summary model coverage
information for each block

Coloring highlights structural coverage in Simulink models. When you enable
coloring for model coverage results (see “Enabling the Colored Diagram
Display” on page 5-69), the tool highlights blocks that received the following
types of model coverage:

• “Decision Coverage (DC)” on page 5-4

• “Condition Coverage (CC)” on page 5-5

• “Modified Condition/Decision Coverage (MCDC)” on page 5-5

Enabling the Colored Diagram Display
To enable the model coverage colored diagram display:

1 In the Simulink window, from the Tools menu, select Coverage Settings.

2 In the Coverage tab, select Coverage for this model.

3 Select the Results tab.

5-69

5 Using Model Coverage

The Display coverage results using model coloring option is selected
by default for all models. This check box becomes visible only after
Coverage for this model is enabled. You can clear this option for the
current session by clearing this check box.

Displaying Model Coverage with Model Coloring
You enable display coverage as described in “Enabling the Colored Diagram
Display” on page 5-69, After you enable this display, any time that the model
generates a model coverage report, individual blocks receiving coverage are
highlighted with light green or light red.

5-70

Colored Simulink® Diagram Coverage Display

The light green Manual Switch blocks received full coverage during testing.
The light red blocks (the engine speed Manual Switch block, and the
fuel rate controller and engine gas dynamics subsystems) received
incomplete coverage during testing. Blocks with no color highlighting
(the Constant blocks, Scope blocks, and the throttle command Repeating
Sequence block) received no coverage.

5-71

5 Using Model Coverage

Note To restore the Simulink diagram to its original colors, right-click
a colored block and, from the context menu, select Coverage. From the
resulting submenu, select Remove information. Alternatively, to remove
model coloring, from the Simulink View menu or the diagram context menu,
select Remove Highlighting .

Accessing Coverage Information for Colored Blocks
“Displaying Model Coverage with Model Coloring” on page 5-70 describes the
highlighted Simulink diagram that appears after simulation when you enable
display coverage with model coloring. Along with the highlighted Simulink
diagram, a Coverage Display window appears.

In the Simulink model, if you click a colored block, the model summarized
coverage appears in the Coverage Display window. From the preceding
example, you see the following summary report when you click the fuel rate
controller subsystem.

Summary coverage information appears in the Coverage Display window for
the block, whose hyperlinked name is at the top of the window. Click the
hyperlink to access the appropriate section of the coverage report for this

5-72

Colored Simulink® Diagram Coverage Display

block. You can also see this section of the report by right-clicking the block
and selecting Coverage > Report.

To set the Coverage Display window to display coverage for a block in
response to a hovering mouse cursor (instead of a mouse click):

• On the right side of the Coverage Display window, select the down arrow.
From the resulting menu, select Focus. Or,

• Right-click a colored block. From the context menus, select Coverage
followed by Display details on mouse-over .

Tip You can adjust the font size in the Coverage Display window. To increase
the font size, press Ctrl+; to decrease the font size, press Ctrl-.

5-73

5 Using Model Coverage

Using Model Coverage Commands

In this section...

“About Model Coverage Commands” on page 5-74

“Creating Tests with cvtest” on page 5-74

“Running Tests with cvsim” on page 5-76

“Producing HTML Reports with cvhtml” on page 5-77

“Saving Test Runs to a File with cvsave” on page 5-78

“Loading Stored Coverage Test Results with cvload” on page 5-79

“Coverage Script Example” on page 5-79

About Model Coverage Commands
Using model coverage commands lets you automate the entire model coverage
process with MATLAB scripts. You can use model coverage commands to set
up model coverage tests, execute them in simulation, and store and report
the results. For a list of the model coverage commands that the Simulink
Verification and Validation software provides, see Chapter 10, “Function
Reference”.

The following sections describe a workflow for using model coverage
commands to create, run, store, and report model coverage tests.

Creating Tests with cvtest
The cvtest command creates a test specification object. Once you create the
object, you simulate it with the cvsim command.

The call to cvtest has the following default syntax:

cvto = cvtest(root)

root is the name of, or a handle to, a Simulink model or a subsystem of
a model. cvto is a handle to the resulting test specification object. Only
the specified model or subsystem and its descendants are subject to model
coverage.

5-74

Using Model Coverage Commands

To create a test object with a specified label (used for reporting results):

cvto = cvtest(root, label)

To create a test with a setup command:

cvto = cvtest(root, label, setupcmd)

You execute the setup command in the base MATLAB workspace, just prior
to running the instrumented simulation. Use this command for loading data
prior to a test.

The returned cvtest object, cvto, has the following structure.

Field Description

id Read-only internal data-dictionary
ID

modelcov Read-only internal data-dictionary
ID

rootPath Name of the system or subsystem for
analysis

label String for reporting results

setupCmd Command executed prior to
simulation

settings.condition Set to 1 for condition coverage

settings.decision Set to 1 for decision coverage

settings.
designverifier

Set to 1 for coverage for Simulink
Design Verifier blocks.

settings.mcdc Set to 1 for MCDC coverage

settings.sigrange Set to 1 for signal range coverage

settings.sigsize Set to 1 for signal size coverage.

settings.tableExec Set to 1 for lookup table coverage

5-75

5 Using Model Coverage

Field Description

modelRefSettings.enable String specifying one of the following
values:

• Off — Disables coverage for all
referenced models

• all — Enables coverage for all
referenced models

• filtered— Enables coverage for
only referenced models not listed
in the excludedModels subfield

modelRefSettings.
excludeTopModel

Set to 1 for excluding coverage for
the top model

modelRefSettings.
excludedModels

String specifying a comma-separated
list of referenced models for
which coverage is disabled when
modelRefSettings.enable specifies
filtered

emlSettings.
enableExternal

Set to 1 to enable coverage for
external M-files called by Embedded
MATLAB functions in your model

options.
forceBlockReduction

Set to 1 to override the Simulink
Block reduction parameter if it is
enabled.

Running Tests with cvsim
Use the cvsim command to simulate a test specification object.

Note You do not have to enable model coverage reporting (see “Creating and
Running Test Cases” on page 5-11) to use the cvsim command.

The call to cvsim has the following default syntax:

5-76

Using Model Coverage Commands

cvdo = cvsim(cvto)

This command executes the cvtest object cvto by starting a simulation run
for the corresponding model. The results are returned in the cvdata object
cvdo. When recording coverage for multiple models in a hierarchy, cvsim
returns its results in a cv.cvdatagroup object.

You can also control the simulation in a cvsim command by using parameters
for the Simulink sim command:

• The following command returns the simulation time vector t, matrix of
state values x, and matrix of output values y.

[cvdo,t,x,y] = cvsim(cvto)

• The following command overrides default simulation values with new
values.

[cvdo,t,x,y] = cvsim(cvto, timespan, options)

For descriptions of the parameters t, x, y, timespan, and options in the
previous examples, see documentation for the Simulink command.

You can execute multiple test objects with the cvsim command. The following
command executes a set of coverage test objects, cvto1, cvto2, ... and
returns the results in a set of cvdata objects, cvdo1, cvdo2,

[cvdo1, cvdo2, ...] = cvsim(cvto1, cvto2, ...)

You can also use the cvsim command to create and execute a cvtest object
in one command:

[cvdo,t,x,y] = cvsim(cvto, label, setupcmd)

Producing HTML Reports with cvhtml
Once you run a test in simulation with cvsim, results are saved to
cv.cvdatagroup or cvdata objects in the base MATLAB workspace. Use the
cvhtml command to produce an HTML report of these objects.

5-77

5 Using Model Coverage

The following command creates an HTML report of the coverage results in
the cvdata object cvdo. The results are written to the file file in the current
MATLAB folder.

cvhtml(file, cvdo)

The following command creates a combined report of several cvdata objects:

cvhtml(file, cvdo1, cvdo2, ...)

The results from each object are displayed in a separate column of the HTML
report. Each cvdata object must correspond to the same root model or
subsystem, or the function produces errors.

You can specify the detail level of the report with the value of detail, an
integer between 0 and 3:

cvhtml(file, cvdo1, cvdo2,..., detail)

Higher numbers for detail indicate greater detail. The default value is 2.

Saving Test Runs to a File with cvsave
Once you run a test with cvsim, save its coverage tests and results to a file
with the function cvsave:

cvsave(filename, model)

Save all the tests and results related to model in the text file filename.cvt:

cvsave(filename, cvto1, cvto2, ...)

Save the tests in the text file filename.cvt. Information about the referenced
models is also saved.

You can save specified cvdata objects to file. The following example saves
the tests, test results, and referenced models’ structure in cvdata objects to
the text file filename.cvt:

cvsave(filename, cvdo1, cvdo2, ...)

5-78

Using Model Coverage Commands

Loading Stored Coverage Test Results with cvload
The cvload command loads into memory the coverage tests and results stored
in a file by the cvsave command. The following example loads the tests and
data stored in the text file filename.cvt:

[cvtos, cvdos] = cvload(filename)

The cvtest objects that are successfully loaded are returned in cvtos, a cell
array of cvtest objects. The cvdata objects that are successfully loaded are
returned in cvdos, a cell array of cvdata objects. cvdos has the same size as
cvtos, but can contain empty elements if a particular test has no results.

In the following example, if restoretotal is 1, the cumulative results from
prior runs are restored:

[cvtos, cvdos] = cvload(filename, restoretotal)

If restoretotal is unspecified or 0, the model’s cumulative results are
cleared.

cvload Special Considerations
When using the cvload command, be aware of the following considerations:

• When a model with the same name exists in the coverage database, only
the compatible results are loaded from the file. They reference the existing
model to prevent duplication.

• When the Simulink models referenced in the file are open but do not exist
in the coverage database, the coverage tool resolves the links to the models
that are already open.

• When you are loading several files that reference the same model, only the
results that are consistent with the earlier files are loaded.

Coverage Script Example
The following example is a portion of simcovdemo2.m, located in the coverage
root folder. This example demonstrates common model coverage commands.

mdl = 'slvnvdemo_ratelim_harness';

5-79

5 Using Model Coverage

testObj1 = cvtest([mdl, '/Adjustable Rate Limiter']);
testObj1.label = 'Gain within slew limits';
testObj1.setupCmd = 'load(''within_lim.mat'');';
testObj1.settings.mcdc = 1;

testObj2 = cvtest([mdl, '/Adjustable Rate Limiter']);
testObj2.label='Rising gain that temporarily exceeds slew limit';
testObj2.setupCmd = 'load(''rising_gain.mat'');';
testObj2.settings.mcdc = 1;

[dataObj1,T,X,Y] = cvsim(testObj1,[0 2]);
[dataObj2,T,X,Y] = cvsim(testObj2,[0 2]);

cvhtml('ratelim_report',dataObj1,dataObj2);
cumulative = dataObj1+dataObj2;
cvsave('ratelim_testdata',cumulative);

In this example, you create two cvtest objects, testObj1 and testObj2, and
simulate them according to their specifications. Each cvtest object uses the
setupCmd property to load a data file before simulation. Decision coverage is
enabled by default. MCDC coverage is enabled as well. After simulation, you
use cvhtml to display the coverage results for two tests and the cumulative
coverage. Lastly, you compute cumulative coverage with the + operator and
save the results. For another detailed example of how to use the model
coverage commands, at the MATLAB command prompt, enter simcovdemo.

5-80

Using Model Coverage Commands for Referenced Models

Using Model Coverage Commands for Referenced Models

In this section...

“Introduction” on page 5-81

“Creating a Test Group with cv.cvtestgroup” on page 5-84

“Running Tests with cvsimref” on page 5-84

“Extracting Results from cv.cvdatagroup” on page 5-85

Introduction
Using Simulink software, you can include one model in another with Model
blocks. Each Model block represents a reference to another model, called a
referenced model or submodel. A referenced model can contain Model blocks
that reference other models. You can construct a hierarchy of referenced
models, in which the topmost model is called the top model. For more
information, see “Referencing a Model” in Simulink User’s Guide .

Model coverage supports referenced models that operate in Normal mode.
You can record coverage only for those Model blocks whose Simulation mode
parameter specifies Normal. You can use model coverage commands to record
coverage for referenced models (see “Using Model Coverage Commands” on
page 5-74). However, if you want to record different types of coverage for
models in a hierarchy, you must use the cvsimref function. The following
steps describe a basic workflow for using this function to obtain model
coverage results for Model blocks.

Step Description See...

1 Use cv.cvtestgroup to group
together test specification objects
that correspond to each model in
a hierarchy.

“Creating a Test Group with
cv.cvtestgroup” on page 5-84

5-81

5 Using Model Coverage

Step Description See...

2 Use cvsimref to simulate the top
model in a hierarchy and record
coverage results for its referenced
models.

“Running Tests with cvsimref” on
page 5-84

3 Use cv.cvdatagroup to extract
the coverage data objects that
correspond to each model in a
hierarchy.

“Extracting Results from
cv.cvdatagroup” on page 5-85

The next sections illustrate how to complete each of these steps using the
following model hierarchy.

5-82

Using Model Coverage Commands for Referenced Models

��������
������	���
���������

���������
������	���
���������

5-83

5 Using Model Coverage

Creating a Test Group with cv.cvtestgroup
The cvtest command creates a test specification object for a Simulink model
(see “Creating Tests with cvtest” on page 5-74). If your model references other
models, you might use a different test specification object for each model in
the hierarchy. In this case, the cv.cvtestgroup object allows you to group
together multiple test specification objects. After you create a group of test
specification objects, you simulate it using the cvsimref function.

For example, suppose that you create a different test specification object for
each of the models in your hierarchy:

cvto1 = cvtest('TopModel')
cvto2 = cvtest('SubModel1')
cvto3 = cvtest('SubModel2')

The following command creates a test group object named cvtg, which
contains all the cvtest objects associated with your model hierarchy:

cvtg = cv.cvtestgroup(cvto1, cvto2, cvto3)

A cv.cvtestgroup object provides methods, such as add and get, so that
you can customize the contents of the cv.cvtestgroup object to meet your
needs. For more information, see the documentation for the cv.cvtestgroup
function.

Running Tests with cvsimref
Once you create a test group object, you simulate it with the cvsimref
function.

Note You must use the cvsimref function to record coverage for referenced
models in a hierarchy.

The call to cvsimref has the following default syntax:

cvdg = cvsimref(topModelName, cvtg)

5-84

Using Model Coverage Commands for Referenced Models

This command executes the test group object cvtg by simulating the top
model in the corresponding model hierarchy, topModelName. It returns the
coverage results in a cv.cvdatagroup object named cvdg.

You can use parameters from the Simulink sim function in a cvsimref
command to control the simulation:

• To return the simulation time vector t, matrix of state values x, and matrix
of output values y:

[cvdg,t,x,y] = cvsimref(topModelName, cvtg)

• To override default simulation values with new values:

[cvdg,t,x,y] = cvsimref(topModelName, cvtg, timespan, options)

For descriptions of the parameters t, x, y, timespan, and options, see the
documentation for the sim function in the Simulink Reference.

Extracting Results from cv.cvdatagroup
Once you simulate a test group with cvsimref, the function returns results
that reside in a cv.cvdatagroup object. The data group object contains
multiple cvdata objects, each of which corresponds to coverage results for a
particular model in the hierarchy.

A cv.cvdatagroup object provides methods, such as allNames and get,
so that you can extract individual cvdata objects. For example, enter the
following command to obtain a cell array that lists all model names associated
with the data group cvdg:

modelNames = cvdg.allNames

To extract the cvdata objects that correspond to the particular models, enter:

cvdo1 = cvdg.get('TopModel')
cvdo2 = cvdg.get('SubModel1')
cvdo3 = cvdg.get('SubModel2')

After you extract the individual cvdata objects, you can use other model
coverage commands to use the coverage data of a particular model. For
example, you can use the cvhtml function to create and display an HTML

5-85

5 Using Model Coverage

report of the coverage results (see “Producing HTML Reports with cvhtml”
on page 5-77).

5-86

Model Coverage for Embedded MATLAB™ Function Blocks

Model Coverage for Embedded MATLAB Function Blocks

In this section...

“Types of Model Coverage in Embedded MATLAB Function Blocks” on
page 5-87

“Creating a Model with Embedded MATLAB Function Block Decisions”
on page 5-88

“Understanding Embedded MATLAB Function Block Model Coverage”
on page 5-92

Types of Model Coverage in Embedded MATLAB
Function Blocks
This section describes the model coverage that an Embedded MATLAB
Function block receives.

Note Model coverage is available only if you have a Simulink Verification
and Validation software license.

During simulation, the following Embedded MATLAB Function block function
statements are tested for decision coverage:

• Function header — Decision coverage is 100% if the function or subfunction
is executed.

• if — Decision coverage is 100% if the if expression evaluates to true at
least once, and false at least once.

• switch — Decision coverage is 100% if every switch case is taken,
including the fall-through case.

• for— Decision coverage is 100% if the equivalent loop condition evaluates
to true at least once, and false at least once.

• while — Decision coverage is 100% if the equivalent loop condition
evaluates to true at least once, and false at least once.

5-87

5 Using Model Coverage

During simulation, in the Embedded MATLAB Function block function. the
following logical conditions are tested for condition and MCDC coverage :

• if statement conditions

• while statement conditions, if present

Creating a Model with Embedded MATLAB Function
Block Decisions
In this topic you use an example model to examine model coverage of an
Embedded MATLAB Function block. The following model contains a single
Embedded MATLAB Function block with output data sent to a Scope block.

Double-click the Embedded MATLAB Function block to specify its program
content.

5-88

Model Coverage for Embedded MATLAB™ Function Blocks

+�	�
��	

�����	�
��	

'������	�

'������	

5-89

5 Using Model Coverage

The run_intersect_test Embedded MATLAB Function block contains two
functions. The top-level function, run_intersect_test, sends the coordinates
for two rectangles, one fixed and the other moving, as arguments to the
subfunction rect_intersect, which tests for intersection between the two.
The origin of the moving rectangle increases by 1 in the x and y directions
with each time step.

The coordinates for the origin of the moving test rectangle are represented
by persistent data x1 and y1, which are both initialized to -1. For the first
sample, x1 and y1 are both incremented to 0. From then on, the progression of
rectangle arguments during simulation is as shown in the following graphic.

5-90

Model Coverage for Embedded MATLAB™ Function Blocks

The fixed rectangle is shown in bold with a lower-left origin of (2,4) and a
width and height of 2. At time t = 0, the first test rectangle has an origin of
(0,0) and a width and height of 2. For each succeeding sample, the origin
of the test rectangle increments by (1,1). The rectangles at sample times
t = 2, 3, and 4 intersect with the test rectangle.

The subfunction rect_intersect checks to see if its two rectangle arguments
intersect. Each argument consists of coordinates for the lower-left corner of
the rectangle (origin), and its width and height. x values for the left and right
sides and y values for the top and bottom are calculated for each rectangle and

5-91

5 Using Model Coverage

compared in nested if-else decisions. The function returns a logical value of
1 if the rectangles intersect and 0 if they do not.

Scope output during simulation, which plots the return value against the
sample time, confirms the intersecting rectangles for sample 2, 3, and 4 .

Understanding Embedded MATLAB Function Block
Model Coverage
You can specify that model coverage reports generate automatically after a
simulation. For instructions on how to specify a model coverage report, see
“Creating and Running Test Cases” on page 5-11 .

After the simulation, the model coverage report appears in a browser window.
After the summary for the model, the Details section of the model coverage
report reports on each of the parts of the model. Model coverage for the
parts of the example model in “Creating a Model with Embedded MATLAB
Function Block Decisions” on page 5-88, in model-block-function order, is
in the following table.

Model: intersecting_rectangles

Block: Embedded MATLAB Function

5-92

Model Coverage for Embedded MATLAB™ Function Blocks

Function: run_intersect_test

1: function out = rect_intersect_test

6: if isempty(x1)

14: function out = rect_intersect(rect1,
rect2)

27: if (top1 < bottom2 || top2 < bottom1)

Decision Lines:

30: if (right1 < left2 || right2 < left1)

The following sections examine the model coverage report for the example
model in reverse function-block-model order. Reversing the order helps you
make sense of the summary information at the top of each section.

Model Coverage for the Embedded MATLAB Function Block
Function run_intersect_test
You see model coverage for the Embedded MATLAB Function block function
run_intersect_testunder the linked name of the function. Clicking this link
opens the function in the Embedded MATLAB Editor. Following the linked
function name is a link to the model coverage report for the parent Embedded
MATLAB Function block of run_intersect_test.

5-93

5 Using Model Coverage

The top half of the report for the function summarizes its model coverage
results. The coverage metrics for run_intersect_test include decision,
condition, and MCDC coverage. You can best understand these metrics by
examining the code listing for run_intersect_test.

5-94

Model Coverage for Embedded MATLAB™ Function Blocks

Lines with coverage elements are marked by a highlighted line number in the
listing. Line 1 receives decision coverage on whether the top-level function
run_intersect_test is executed. Line 6 receives decision coverage for its
if statement. Line 14 receives decision coverage on whether the subfunction

5-95

5 Using Model Coverage

rect_intersect is executed. Lines 27 and 30 receive decision, condition, and
MCDC coverage for their if statements and conditions. Each of these lines
is the subject of a report that follows the listing.

Notice that the condition right1 < left2 in line 30 is highlighted in red.
This means that this condition was not tested for all of its possible outcomes
during simulation. Exactly which of the outcomes was not tested is in the
report for the decision in line 30.

The following sections display the coverage for each run_intersect_test
decision line. The coverage for each line is titled with the line itself, which is
linked to display the function with the line highlighted.

Coverage for Line 1. The coverage metrics for line 1 are below the listing
for the function run_intersect_test.

The first line of every function receives coverage analysis indicative
of the decision to run the function in response to a call. Coverage for
run_intersect_test indicates that it executed during testing.

Coverage for Line 6. The coverage metrics for line 6 are below the coverage
metrics for line 1.

5-96

Model Coverage for Embedded MATLAB™ Function Blocks

The Decisions analyzed table indicates that the decision in line 6, if
isempty(x1), executed a total of eight times. The first time it executed,
the decision evaluated to true, enabling run_intersect_test to initialize
the values of its persistent data. The remaining seven times the decision
executed, it evaluated to false. Because both possible outcomes occurred,
decision coverage is 100%.

Coverage for Line 14. The coverage metrics for line 14 are below the
coverage metrics for line 6.

5-97

5 Using Model Coverage

This table indicates that the subfunction rect_intersect executed during
testing.

Coverage for Line 27. Coverage metrics for line 27 are below the coverage
metrics for line 14.

The Decisions analyzed table indicates that there are two possible outcomes
for the decision in line 27: true and false. Five of the eight times it was
executed, the decision evaluated to false. The remaining three times, it

5-98

Model Coverage for Embedded MATLAB™ Function Blocks

evaluated to true. Because both possible outcomes occurred, decision coverage
is 100%.

The Conditions analyzed table sheds some additional light on the decision
in line 27. Because this decision consists of two conditions linked by a logical
OR (||) operation, only one condition must evaluate true for the decision to be
true. If the first condition evaluates to true, there is no need to evaluate the
second condition. The first condition, top1 < bottom2, was evaluated eight
times, and was true twice. This means that it was necessary to evaluate the
second condition only six times. In only one case was it true, which brings the
total true occurrences for the decision to three, as reported in the Decisions
analyzed table.

MCDC coverage looks for decision reversals that occur because one condition
outcome changes from T to F or from F to T. The MC/DC analysis table
identifies all possible combinations of outcomes for the conditions that lead
to a reversal in the decision. The character x is used to indicate a condition
outcome that is irrelevant to the decision reversal. Decision-reversing
condition outcomes that are not achieved during simulation are marked with a
set of parentheses. There are no parentheses, therefore all decision-reversing
outcomes occurred and MCDC coverage is complete for the decision in line 27.

Coverage for Line 30. Coverage metrics for line 30 are below the coverage
metrics for line 27.

5-99

5 Using Model Coverage

The line 30 decision, if (right1 < left2 || right2 < left1), is nested in
the if statement of the line 27 decision and is evaluated only if the line 27
decision is false. Because the line 27 decision evaluated false five times, line
30 is evaluated five times, three of which are false. Because both the true and
false outcomes were achieved, decision coverage for line 30 is 100%.

Because line 30, like line 27, has two conditions related by a logical OR
operator (||), condition 2 is tested only if condition 1 is false. Because
condition 1 tests false five times, condition 2 is tested five times. Of these,

5-100

Model Coverage for Embedded MATLAB™ Function Blocks

condition 2 tests true two times and false three times, which accounts for the
two occurrences of the true outcome for this decision.

Because the first condition of the line 30 decision does not test true, both
outcomes do not occur for that condition and the condition coverage for
the first condition is highlighted with a rose color. MCDC coverage is also
highlighted in the same way for a decision reversal based on the true outcome
for that condition.

Coverage for run_intersect_test. The metrics that summarize coverage for
the entire run_intersect_test function are reported prior to its listing and
are repeated here as shown.

The results summarized in the coverage metrics summary can be expressed
in the following conclusions:

• There are eight decision outcomes reported for run_intersect_test in the
line reports: one for line 1 (executed), two for line 6 (true and false), one
for line 14 (executed), two for line 27 (true and false), and two for line 30
(true and false). The decision coverage for each line shows 100% decision

5-101

5 Using Model Coverage

coverage. This means that decision coverage for run_intersect_test is
eight of eight possible outcomes, or 100%.

• There are four conditions reported for run_intersect_test in the line
reports. Lines 27 and 30 each have two conditions, and each condition
has two condition outcomes (true and false), for a total of eight condition
outcomes in run_intersect_test. All conditions tested positive for both
the true and false outcome except for the first condition of line 30 (right1
< left2). This means that condition coverage for run_intersect_test is
seven of eight, or 88%.

• The MCDC coverage tables for decision lines 27 and 30 each list two
cases of decision reversal for each condition, for a total of four possible
reversals. Only the decision reversal for a change in the evaluation of the
condition right1 < left2 of line 30 from true to false did not occur during
simulation. This means that three of four, or 75% of the possible reversal
cases were tested for during simulation, for a coverage of 75%.

Model Coverage for the Embedded MATLAB Function Block
and the Model
The model coverage report for the block Embedded MATLAB Function shows
that it has no decisions of its own apart from its function. However, it does
repeat the summary information for its function run_intersect_test as
coverage for its descendent objects.

5-102

Model Coverage for Embedded MATLAB™ Function Blocks

Because there are no additional coverage objects in the model apart from
the Embedded MATLAB Function block, the remaining report for the
model intersecting_rectangles also repeats the preceding coverage for
descendent objects.

5-103

5 Using Model Coverage

5-104

Customizing the Model Advisor

• Chapter 6, “Overview of the Model Advisor”

• Chapter 7, “Authoring Custom Checks”

• Chapter 8, “Creating Custom Configurations by Organizing Checks
and Folders”

• Chapter 9, “Deploying Custom Configurations”

6

Overview of the Model
Advisor

• “Why Use and Customize the Model Advisor?” on page 6-2

• “Customizing and Using the Model Advisor Workflow” on page 6-4

• “Before Customizing the Model Advisor” on page 6-5

6 Overview of the Model Advisor

Why Use and Customize the Model Advisor?

In this section...

“About the Model Advisor” on page 6-2

“Customizing the Model Advisor” on page 6-2

About the Model Advisor
The Model Advisor is a GUI that provides a way for you to check a Simulink
model or subsystem for consistent modeling guidelines, using MathWorks
checks. Using the checks, you can easily apply these guidelines across projects
and development teams. For more information, see “Consulting the Model
Advisor” in the Simulink documentation.

The Model Advisor includes MathWorks checks, which help you define and
implement consistent design guidelines. Running the checks reviews your
model for conditions and configuration settings that cause inaccurate or
inefficient simulation and code generation of the system that the model
represents. The Model Advisor displays different MathWorks checks
depending on which products you have installed. For more information on
individual checks, see:

• “Simulink Checks”

• “Real-Time Workshop® Checks”

• “Simulink® Verification and Validation Checks” on page 14-2

Customizing the Model Advisor
The Simulink Verification and Validation product allows you to extend the
capabilities of the Model Advisor. Using Model Advisor APIs and the Model
Advisor Configuration Editor, you can:

• Customize the behavior of the Model Advisor by defining your own custom
checks, and writing your own callback functions.

• Organize checks and folders to create custom Model Advisor configurations.

6-2

Why Use and Customize the Model Advisor?

• Create multiple custom configurations that you use for different projects
or modeling guidelines, and switch between these configurations in the
Model Advisor.

• Deploy the custom configurations to your users.

For more information, see “Customizing and Using the Model Advisor
Workflow” on page 6-4.

6-3

6 Overview of the Model Advisor

Customizing and Using the Model Advisor Workflow
To customize and use the Model Advisor, perform the following high-level
tasks:

1 Review the information in “Before Customizing the Model Advisor” on
page 6-5.

2 Optionally, author custom checks in a customization file. For detailed
information, see Chapter 7, “Authoring Custom Checks”.

3 Organize checks into new and existing folders to create custom
configurations. To organize the Model Advisor, use the Model Advisor
Configuration Editor or create M-code in a customization file. For
detailed information, see Chapter 8, “Creating Custom Configurations by
Organizing Checks and Folders”.

4 Optionally, deploy custom configurations. For detailed information, see
Chapter 9, “Deploying Custom Configurations”.

5 Verify that models comply with modeling guidelines using the Model
Advisor. For detailed information, see “Consulting the Model Advisor”.

6-4

Before Customizing the Model Advisor

Before Customizing the Model Advisor
Before customizing the Model Advisor:

• If you want to create custom checks, know how to create an M-file script.
For more information, see “M-File Scripts” in the MATLAB documentation.

• If you want to create custom checks, understand how to access model
constructs that you want to check. For example, know how to find block
and model parameters. For more information on using utilities for creating
check callbacks, see “Common Utilities for Authoring Checks” on page 7-23.

• Identify which MathWorks checks you want to include in your custom
Model Advisor configuration.

When you are ready to create a custom configuration, follow the “Customizing
and Using the Model Advisor Workflow” on page 6-4. Each section provides
you with detailed examples of how to create custom checks and configurations
in the Model Advisor.

6-5

6 Overview of the Model Advisor

6-6

7

Authoring Custom Checks

• “Authoring Checks Workflow” on page 7-2

• “Customization File Overview” on page 7-3

• “Register Checks and Process Callbacks” on page 7-6

• “Defining Custom Checks” on page 7-11

• “Creating Callback Functions and Results” on page 7-22

7 Authoring Custom Checks

Authoring Checks Workflow
1 On your MATLAB path, create a customization file called
sl_customization.m. In this file, create a sl_customization() function
to register the custom checks that you create and optional process callbacks
with the Model Advisor. For detailed information, see “Register Checks
and Process Callbacks” on page 7-6.

2 Define custom checks and where they appear in the Model Advisor. For
detailed information, see “Defining Custom Checks” on page 7-11.

3 Specify what actions you want the Model Advisor to take for the custom
checks by creating a check callback function for each custom check. For
detailed information, see “Creating Callback Functions and Results” on
page 7-22.

4 Optionally, specify what automatic fix operations the Model Advisor
performs by creating an action callback function. For detailed information,
see “Action Callback Function” on page 7-37.

5 Optionally, specify startup and post-execution actions by creating a process
callback function. For detailed information, see “Defining Startup and
Post-Execution Actions Using Process Callback Functions” on page 7-8.

7-2

Customization File Overview

Customization File Overview
A customization file is an M-file that you create and name
sl_customization.m. The sl_customization.m file contains a set of
functions for registering and defining custom checks, tasks, and groups. To
set up the sl_customization.m file, follow the guidelines in this table.

Function Description When Required

sl_customization() Registers custom checks,
tasks, folders, and
callbacks with the Simulink
customization manager at
startup (see “Register Checks
and Process Callbacks” on
page 7-6).

Required for all customizations
to the Model Advisor.

One or more check definitions Defines all custom checks (see
“Defining Custom Checks” on
page 7-11).

Required for custom checks
and to add custom checks to
the By Product folder.

Check callback functions Defines the actions of the
custom checks (see “Creating
Callback Functions and
Results” on page 7-22).

Required for custom checks.
You must write one callback
function for each custom
check.

One or more calls to check
input parameters

Specifies input parameters to
custom checks (see “Defining
Check Input Parameters” on
page 7-16).

Optional.

One or more calls to check list
views

Specifies calls to the Model
Advisor Result Explorer for
custom checks (see “Defining
Model Advisor Result Explorer
Views” on page 7-18).

Optional.

7-3

7 Authoring Custom Checks

Function Description When Required

One or more calls to check
actions

Specifies actions the software
performs for custom checks
(see “Defining Check Actions”
on page 7-19 and “Action
Callback Function” on page
7-37).

Optional.

One process callback function Specifies actions to be
performed at startup and
post-execution time (see
“Defining Startup and
Post-Execution Actions Using
Process Callback Functions”
on page 7-8).

Optional.

The following is an example of a custom configuration of the Model Advisor
that has custom checks defined in custom folders. The selected check includes
input parameters, list view parameters, and actions.

7-4

Customization File Overview

7-5

7 Authoring Custom Checks

Register Checks and Process Callbacks

In this section...

“Create sl_customization Function” on page 7-6

“Registering Checks and Process Callbacks” on page 7-6

“Defining Startup and Post-Execution Actions Using Process Callback
Functions” on page 7-8

Create sl_customization Function
To add checks to the Model Advisor, on your MATLAB path, in the
sl_customization.m file, create the sl_customization() function.

Tip

• You can have more than one sl_customization.m file on your MATLAB
path.

• Do not place an sl_customization.m file that customizes checks and
folders in the Model Advisor in your root MATLAB folder or any of its
subfolders, except for the matlabroot/work folder. Otherwise, the Model
Advisor ignores the customizations that the file specifies.

The sl_customization function accepts one argument, a customization
manager object, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom
checks and process callbacks. Use these methods to register customizations
specific to your application, as described in the following sections.

Registering Checks and Process Callbacks
To register custom checks and process callbacks, the customization manager
includes the following methods:

7-6

Register Checks and Process Callbacks

• addModelAdvisorCheckFcn (@checkDefinitionFcn)

Registers the checks that you define in checkDefinitionFcn to the By
Product folder of the Model Advisor.

The checkDefinitionFcn argument is a handle to the function that defines
all custom checks that you want to add to the Model Advisor as instances
of the ModelAdvisor.Check class (see “Defining Custom Checks” on page
7-11).

• addModelAdvisorProcessFcn (@modelAdvisorProcessFcn)

Registers the process callback function for the Model Advisor checks (see
“Defining Startup and Post-Execution Actions Using Process Callback
Functions” on page 7-8).

Caution The Model Advisor registers only one process callback function.
If you have more than one sl_customization.m file on your MATLAB
path, the Model Advisor registers the process callback function from the
sl_customization.m file that has the highest priority.

Note The @ sign defines a function handle that MATLAB calls. For more
information, see “At — @” in the MATLAB documentation.

Model Advisor Code Example: Registering Custom Checks and
Process Callbacks
The following code example registers custom checks and a process callback
function:

function sl_customization(cm)

% register custom checks

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register custom process callback

cm.addModelAdvisorProcessFcn(@ModelAdvisorProcessFunction);

7-7

7 Authoring Custom Checks

Note If you add custom tasks and folders within the sl_customization.m
file, include methods for registering the tasks and folders in the
sl_customization function. For more information, see “Registering Tasks
and Folders” on page 8-14.

Defining Startup and Post-Execution Actions Using
Process Callback Functions
The process callback function is an optional function that you use to configure
the Model Advisor and process check results at run time. The process callback
function specifies actions that the software performs at different stages of
Model Advisor execution:

• configure stage: The Model Advisor executes configure actions at
startup, after all checks and tasks have been initialized. At this stage, you
can customize how the Model Advisor constructs lists of checks and tasks
by modifying Visible, Enable, and Value properties. For example, you can
remove, rename, and selectively display checks and tasks.

• process_results stage: The Model Advisor executes process_results
actions after checks complete execution. You can specify actions to examine
and report on the results returned by check callback functions.

If you create a process callback function, you must register it, as described in
“Register Checks and Process Callbacks” on page 7-6. The following sections
provide mode information about defining your own process callback functions.

Process Callback Function Arguments
The process callback function takes the following arguments.

7-8

Register Checks and Process Callbacks

Argument I/O Type Data Type Description

stage Input Enumeration Specifies the stages at
which process callback
actions are executed.
Use this argument in
a switch statement to
specify actions for the
stages configure and
process_results.

system Input Path Model or subsystem
that the Model Advisor
analyzes.

checkCellArray Input/Output Cell array As input, the array of
checks constructed in the
check definition function.
As output, the array of
checks modified by actions
in the configure stage.

taskCellArray Input/Output Cell array As input, the array of
tasks constructed in the
task definition function.
As output, the array of
tasks modified by actions
in the configure stage.

Model Advisor Code Example: Process Callback Function
The following code is an example of a process callback function that specifies
actions in the configure stage, to make only custom checks visible. In the
process_results stage, this function displays information at the MATLAB
command line for checks that do not pass.

% Process Callback Function

% Defines actions to execute at startup and post-execution

function [checkCellArray taskCellArray] = ...

ModelAdvisorProcessFunction(stage, system, checkCellArray, taskCellArray)

switch stage

% Specify the appearance of the Model Advisor window at startup

7-9

7 Authoring Custom Checks

case 'configure'

for i=1:length(checkCellArray)

% Hide all checks that do not belong to custom folder

if isempty(strfind(checkCellArray{i}.ID, 'mathworks.example'))

checkCellArray{i}.Visible = false;

checkCellArray{i}.Value = false;

end

end

% Specify actions to perform after the Model Advisor completes execution

case 'process_results'

for i=1:length(checkCellArray)

% Print message if check does not pass

if checkCellArray{i}.Selected && (strcmp(checkCellArray{i}.Title, ...

'Check Simulink window screen color'))

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

% Verify whether the check was run and if it failed

if mdladvObj.verifyCheckRan(checkCellArray{i}.ID)

if ~mdladvObj.getCheckResultStatus(checkCellArray{i}.ID)

% Display text in MATLAB Command Window

disp(['Example message from Model Advisor Process'...

' callback.']);

end

end

end

end

end

7-10

Defining Custom Checks

Defining Custom Checks

In this section...

“About Custom Checks” on page 7-11

“Contents of Check Definitions” on page 7-11

“Displaying and Enabling Checks” on page 7-13

“Defining Where Custom Checks Appear” on page 7-14

“Model Advisor Code Example: Check Definition Function” on page 7-15

“Defining Check Input Parameters” on page 7-16

“Defining Model Advisor Result Explorer Views” on page 7-18

“Defining Check Actions” on page 7-19

About Custom Checks
You can create a custom check to use in the Model Advisor. Creating
custom checks provides you with the ability to specify which conditions and
configuration settings the Model Advisor reviews.

You define custom checks in one or more functions that specify the properties
of each instance of the ModelAdvisor.Check class. Define one instance of
this class for each custom check that you want to add to the Model Advisor,
and register the custom check as described in “Register Checks and Process
Callbacks” on page 7-6.

Tip You can add a check to multiple folders by creating a task. For more
information, see “Adding a Check to Custom or Multiple Folders Using Tasks”
on page 8-16.

The following sections describe how to define custom checks.

Contents of Check Definitions
When you define a Model Advisor check, it contains the information listed
in the following table.

7-11

7 Authoring Custom Checks

Contents Description

Check ID (required) Uniquely identifies the check. The
Model Advisor uses this id to access
the check.

Handle to check callback function
(required)

Function that specifies the contents
of a check.

Check name (recommended) Creates a name for the check that
the Model Advisor displays.

Check properties (optional) Creates a user interface with the
check. When adding checks as
tasks, the Model Advisor uses the
task properties instead of the check
properties, except for Visible and
LicenseName. For more information,
see ModelAdvisor.Check and
ModelAdvisor.Task.

Tip When you add checks to the
Model Advisor as tasks, specify
only the required properties
of a check, because the task
definition includes the additional
properties. For example, you
define the description of the check
in the task definition using the
ModelAdvisor.Task.Description
property instead of the
ModelAdvisor.Check.TitleTips
property.

Input Parameters (optional) Adds input parameters that request
input from the user. The Model
Advisor uses the input to perform
the check.

7-12

Defining Custom Checks

Contents Description

Action (optional) Adds automatic fixing action.

Explore Result button (optional) Adds the Explore Result button
that the user clicks to open the
Model Advisor Result Explorer.

Displaying and Enabling Checks
You can create a check and specify how it appears in the Model Advisor.
You can define when to display a check, or whether a user can select or
clear a check using the Visible, Enable, and Value properties of the
ModelAdvisor.Check class.

Note When adding checks to the Model Advisor as tasks, specify these
properties in the ModelAdvisor.Task class. If you specify the properties in
both ModelAdvisor.Check and ModelAdvisor.Task, the ModelAdvisor.Task
properties take precedence, except for the Visible and LicenseName
properties. For more information, see ModelAdvisor.Task.

Modify the behavior of the Visible, Enable, and Value properties in a process
callback function (see “Defining Startup and Post-Execution Actions Using
Process Callback Functions” on page 7-8). The following chart illustrates
how these properties interact.

7-13

7 Authoring Custom Checks

&������,
'��	�

������
�#��!
���
��!

-�	���
�	����

��	
�&����
������
���

�����

���

�	����
,
�����

���

'������
�#��!
���
��!

 �
#���
�$�
�#��!���.

'������
�#��!���.
�
������	

&����/���

�����
���

'������
�#��!
���
��!

Defining Where Custom Checks Appear
Specify where the Model Advisor places custom checks using the following
guidelines:

• To place a check in a new folder in the Model Advisor root, use the
ModelAdvisor.Group class. See “Defining Custom Tasks” on page 8-15.

• To place a check in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class. See “Defining Custom Tasks” on page
8-15.

7-14

Defining Custom Checks

• To place a check in the By Product folder, use the
ModelAdvisor.Root.publish method.

Model Advisor Code Example: Check Definition
Function
The following is an example of a function that defines the custom checks
associated with the callback functions described in “Creating Callback
Functions and Results” on page 7-22. The check definition function returns a
cell array of custom checks to be added to the Model Advisor.

The check definitions in the example use are used the tasks described in
“Defining Custom Tasks” on page 8-15.

% Defines custom Model Advisor checks

function defineModelAdvisorChecks

% Sample check 1: Informational check

rec = ModelAdvisor.Check('mathworks.example.configManagement');

rec.Title = 'Informational check for model configuration management';

setCallbackFcn(rec, @modelVersionChecksumCallbackUsingFT,'None','StyleOne');

rec.CallbackContext = 'PostCompile';

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

% Sample check 2: Basic Check with Pass/Fail Status

rec = ModelAdvisor.Check('mathworks.example.unconnectedObjects');

rec.Title = 'Check for unconnected objects';

setCallbackFcn(rec, @unconnectedObjectsCallbackUsingFT,'None','StyleOne');

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

% Sample Check 3: Check with Subchecks and Actions

rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');

rec.Title = 'Check safety-related optimization settings';

setCallbackFcn(rec, @OptmizationSettingCallback,'None','StyleOne');

% Define an automatic fix action for this check

modifyAction = ModelAdvisor.Action;

setCallbackFcn(modifyAction, @modifyOptmizationSetting);

modifyAction.Name = 'Modify Settings';

7-15

7 Authoring Custom Checks

modifyAction.Description = ['Modify model configuration optimization' ...

' settings that can impact safety.'];

modifyAction.Enable = true;

setAction(rec, modifyAction);

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

Defining Check Input Parameters
With input parameters, the check author can request input from the
user for a Model Advisor check. Define input parameters using the
ModelAdvisor.InputParameter class inside a custom check function (see
“Defining Custom Checks” on page 7-11). You must define one instance of this
class for each input parameter that you want to add to a Model Advisor check.

Note You do not have to create input parameters for every custom check.

Specifying Input Parameter Layout
Specify the layout of input parameters in an input parameter definition. To
place input parameters, use the following methods.

Method Description

ModelAdvisor.Check
setInputParametersLayoutGrid

Specifies the size of the input
parameter grid.

ModelAdvisor.InputParameter
setRowSpan

Specifies the number of rows the
parameter occupies in the Input
Parameter layout grid.

ModelAdvisor.InputParameter
setColSpan

Specifies the number of columns
the parameter occupies in the Input
Parameter layout grid.

For information on using these methods, see the ModelAdvisor.Check and
ModelAdvisor.InputParameter class documentation.

7-16

Defining Custom Checks

Model Advisor Code Example: Input Parameter Definition
The following is an example of defining input parameters that you add to
a custom check. You must include input parameter definitions inside a
custom check definition (see “Model Advisor Code Example: Check Definition
Function” on page 7-15). The following code, when included in a custom check
definition, creates three input parameters.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.setInputParametersLayoutGrid([3 2]);
% define input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;
inputParam1.Description = 'sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);
inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';
inputParam3.Type='Combobox';
inputParam3.Description='sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};
inputParam3.setRowSpan([2 2]);
inputParam3.setColSpan([2 2]);
rec.setInputParameters({inputParam1,inputParam2,inputParam3});

The Model Advisor displays these input parameters in the right pane, in
an Input Parameters box.

7-17

7 Authoring Custom Checks

Defining Model Advisor Result Explorer Views
A list view provides a way for users to fix check warnings and failures using
the Model Advisor Result Explorer. Creating a list view allows you to :

• Add the Explore Result button to the custom check in the Model Advisor
window.

• Provide the information to populate the Model Advisor Result Explorer.

For information on using the Model Advisor Results Explorer, see
“Batch-Fixing Warnings or Failures” in the Simulink documentation.

Define list views using the ModelAdvisor.ListViewParameter class inside
a custom check function (see “Defining Custom Checks” on page 7-11). You
must define one instance of this class for each list view that you want to add
to a Model Advisor Result Explorer window.

Note You do not have to create list views for every custom check.

7-18

Defining Custom Checks

Model Advisor Code Example: List View Definition
The following is an example of defining list views. You must make theExplore
Result button visible using the ModelAdvisor.Check.ListViewVisible
property inside a custom check function, and include list view definitions
inside a check callback function (see “Detailed Check Callback Function”
on page 7-31).

The following code, when included in a check definition function, adds the
Explore Result button to the check in the Model Advisor.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

% add 'Explore Result' button

rec.ListViewVisible = true;

The following code, when included in a check callback function, provides the
information to populate the Model Advisor Result Explorer.

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

mdladvObj.setListViewParameters({myLVParam});

Defining Check Actions
An action provides a way for you to specify an action that the Model Advisor
performs to fix a Model Advisor check. When you define an action, the Model
Advisor window includes an Action box below the Analysis box.

You define actions using the ModelAdvisor.Action class inside a custom
check function (see “Defining Custom Checks” on page 7-11). You must define:

• One instance of this class for each action that you want to take.

• One action callback function for each action (see “Action Callback Function”
on page 7-37).

7-19

7 Authoring Custom Checks

Note

• Each check can contain only one action.

• You do not have to create actions for every custom check.

Model Advisor Code Example: Action Definition
The following is an example of defining actions within a custom check. You
must include action definitions inside a check definition function (see “Model
Advisor Code Example: Check Definition Function” on page 7-15).

The following code, when included in a check definition function, provides the
information to populate the Action box in the Model Advisor.

rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');

% Define an automatic fix action for this check

modifyAction = ModelAdvisor.Action;

modifyAction.setCallbackFcn(@modifyOptmizationSetting);

modifyAction.Name = 'Modify Settings';

modifyAction.Description = ['Modify model configuration optimization' ...

' settings that can impact safety'];

modifyAction.Enable = true;

rec.setAction(modifyAction);

The Model Advisor, in the right pane, displays an Action box.

7-20

Defining Custom Checks

7-21

7 Authoring Custom Checks

Creating Callback Functions and Results

In this section...

“About Callback Functions” on page 7-22

“Common Utilities for Authoring Checks” on page 7-23

“Simple Check Callback Function” on page 7-23

“Detailed Check Callback Function” on page 7-31

“Check Callback Function with Hyperlinked Results” on page 7-33

“Action Callback Function” on page 7-37

“Formatting Model Advisor Results” on page 7-38

About Callback Functions
A callback function specifies the actions that the Model Advisor performs on
a model or subsystem, based on the check or action that the user runs. You
must create a callback function for each custom check and action so that the
Model Advisor can execute the function when a user runs the check. There
are several types of callback functions:

• “Simple Check Callback Function” on page 7-23

• “Detailed Check Callback Function” on page 7-31

• “Check Callback Function with Hyperlinked Results” on page 7-33

• “Action Callback Function” on page 7-37

All types of callback functions provide one or more return arguments for
displaying the results after executing the check or action. In some cases,
return arguments are strings or cell arrays of strings that support embedded
HTML tags for text formatting. The MathWorks™ recommends that you use
the Model Advisor Result Template API to format check results, as described
in “Formatting Model Advisor Results” on page 7-38. Limit HTML tags to be
compatible with alternate output formats.

7-22

Creating Callback Functions and Results

Common Utilities for Authoring Checks
When you create a check, there are common Simulink utilities that you
can use to make the check perform different actions. Following is a list of
utilities and when to use them. In the Utility column, click the link for more
information about the utility.

Utility Used for...

find_system Getting handle or path to:

• Blocks

• Lines

• Annotations

When getting the object, you can:

• Specify a search depth

• Search under masks and libraries

get_param / set_param Getting and setting system and
block parameter values.

inspect Getting object properties. First you
must get a handle to the object.

simget / simset Getting and settingmodel simulation
parameters.

evalin Working in the base workspace.

Stateflow API Programmatic access to Stateflow
objects.

Simple Check Callback Function
Use a simple check callback function with results formatted using the Result
Template API to indicate whether the model passed or failed the check, or
to recommend correcting an issue. The keyword for this callback function is
StyleOne. The check definition requires this keyword (see “Defining Custom
Checks” on page 7-11).

7-23

7 Authoring Custom Checks

The check callback function takes the following arguments.

Argument I/O Type Description

system Input Path to the model or subsystem analyzed by the
Model Advisor.

result Output MATLAB string that supports Model Advisor
Formatting API calls or embedded HTML tags
for text formatting.

Model Advisor Code Example: Informational Check Callback
Function
The following code is an example of a callback function for a custom
informational check that finds and displays the model configuration and
checksum information. The informational check uses the Result Template
API to format the check result.

An informational check includes the following items in the results:

• A description of what the check is reviewing.

• References to standards, if applicable.

An informational check does not include the following items in the results:

• The check status. The Model Advisor displays the overall check status,
but the status is not in the result.

• A description of the status.

• The recommended action to take when the check does not pass.

• Subcheck results.

• A line below the results.

% Sample Check 1 Callback Function: Informational Check

% Find and display model configuration and checksum information

% Informational checks do not have a passed or warning status in the results

function resultDescription = modelVersionChecksumCallbackUsingFT(system)

7-24

Creating Callback Functions and Results

resultDescription = [];

system = getfullname(system);

model = bdroot(system);

% Format results in a list using Model Advisor Result Template API

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Add See Also section for references to standards

docLinkSfunction{1} = {['IEC 61508-3, Table A.8 (5)' ...

' ''Software configuration management'' ']};

setRefLink(ft,docLinkSfunction);

% Description of check in results

desc = 'Display model configuration and checksum information.';

% If running the Model Advisor on a subsystem, add note to description

if strcmp(system, model) == false

desc = strcat(desc, ['
NOTE: The Model Advisor is reviewing a' ...

' sub-system, but these results are based on root-level settings.']);

end

setCheckText(ft, desc);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

% If err, use these values

mdlver = 'Error - could not retrieve Version';

mdlauthor = 'Error - could not retrieve Author';

mdldate = 'Error - could not retrieve Date';

mdlsum = 'Error - could not retrieve CheckSum';

% Get model configuration and checksum information

try

mdlver = get_param(model,'ModelVersion');

mdlauthor = get_param(model,'LastModifiedBy');

mdldate = get_param(model,'LastModifiedDate');

mdlsum = Simulink.BlockDiagram.getChecksum(model);

mdlsum = [num2str(mdlsum(1)) ' ' num2str(mdlsum(2)) ' ' ...

num2str(mdlsum(3)) ' ' num2str(mdlsum(4))];

mdladvObj.setCheckResultStatus(true); % init to true

catch err

mdladvObj.setCheckResultStatus(false);

setSubResultStatusText(ft,err.message);

resultDescription{end+1} = ft;

7-25

7 Authoring Custom Checks

return

end

% Display the results

lbStr ='
';

resultStr = ['Model Version: ' mdlver lbStr 'Author: ' mdlauthor lbStr ...

'Date: ' mdldate lbStr 'Model Checksum: ' mdlsum];

setSubResultStatusText(ft,resultStr);

% Informational checks do not have subresults, supress line

setSubBar(ft,false);

resultDescription{end+1} = ft;

Model Advisor Code Example: Basic Check with Pass/Fail
Status
Here is an example of a callback function for a custom basic check that finds
and reports unconnected lines, input ports, and output ports.

A basic check includes the following items in the results:

• A description of what the check is reviewing.

• References to standards, if applicable.

• The status of the check.

• A description of the status.

• Results for the check.

• The recommended actions to take when the check does not pass.

A basic check does not include the following items in the results:

• Subcheck results.

• A line below the results.

% Sample Check 2 Callback Function: Basic Check with Pass/Fail Status

% Find and report unconnected lines, input ports, and output ports

function ResultDescription = unconnectedObjectsCallbackUsingFT(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

7-26

Creating Callback Functions and Results

% Initialize variables

mdladvObj.setCheckResultStatus(false);

ResultDescription ={};

ResultStatus = false; % Default check status is 'Warning'

system = getfullname(system);

isSubsystem = ~strcmp(bdroot(system), system);

% Format results in a list using Model Advisor Result Template API

% Create a list template object

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results

if isSubsystem

checkDescStr = ['Identify unconnected lines, input ports, and ' ...

'output ports in the subsystem.'];

else

checkDescStr = ['Identify unconnected lines, input ports, and ' ...

'output ports in the model.'];

end

setCheckText(ft,checkDescStr);

% Add See Also section with references to applicable standards

checkStdRef = 'IEC 61508-3, Table A.3 (3) ''Language subset'' ';

docLinkSfunction{1} = {checkStdRef};

setRefLink(ft,docLinkSfunction);

% Basic checks do not have subresults, supress line

setSubBar(ft,false);

% Check for unconnected lines, inputs, and outputs

sysHandle = get_param(system, 'Handle');

uLines = find_system(sysHandle, ...

'Findall', 'on', ...

'LookUnderMasks', 'on', ...

'Type', 'line', ...

'Connected', 'off');

uPorts = find_system(sysHandle, ...

'Findall', 'on', ...

'LookUnderMasks', 'on', ...

'Type', 'port', ...

7-27

7 Authoring Custom Checks

'Line', -1);

% Use parents of port objects for the correct highlight behavior

if ~isempty(uPorts)

for i=1:length(uPorts)

uPorts(i) = get_param(get_param(uPorts(i), 'Parent'), 'Handle');

end

end

% Create cell array of unconnected object handles

modelObj = {};

searchResult = union(uLines, uPorts);

for i = 1:length(searchResult)

modelObj{i} = searchResult(i);

end

% No unconnected objects in model

% Set result status to 'Pass' and display text describing the status

if isempty(modelObj)

setSubResultStatus(ft,'Pass');

if isSubsystem

setSubResultStatusText(ft,['There are no unconnected lines, ' ...

'input ports, and output ports in this subsystem.']);

else

setSubResultStatusText(ft,['There are no unconnected lines, ' ...

'input ports, and output ports in this model.']);

end

ResultStatus = true;

% Unconnected objects in model

% Set result status to 'Warning' and display text describing the status

else

setSubResultStatus(ft,'Warn');

if ~isSubsystem

setSubResultStatusText(ft,['The following lines, input ports, ' ...

'or output ports are not properly connected in the system: ' system]);

else

setSubResultStatusText(ft,['The following lines, input ports, or ' ...

'output ports are not properly connected in the subsystem: ' system]);

end

% Specify recommended action to fix the warning

7-28

Creating Callback Functions and Results

setRecAction(ft,'Connect the specified blocks.');

% Create a list of handles to problem objects

setListObj(ft,modelObj);

ResultStatus = false;

end

% Pass the list template object to the Model Advisor

ResultDescription{end+1} = ft;

% Set overall check status

mdladvObj.setCheckResultStatus(ResultStatus);

Model Advisor Code Example: Check With Subchecks and
Actions
Here is an example of a callback function for a custom check that finds and
reports optimization settings. The check consists of two subchecks. The first
reviews the Block reduction optimization setting, and the second reviews
the Conditional input branch execution optimization setting.

A check with subchecks includes the following items in the results:

• A description of what the overall check is reviewing.

• A title for the subcheck.

• A description of what the subcheck is reviewing.

• References to standards, if applicable.

• The status of the subcheck.

• A description of the status.

• Results for the subcheck.

• Recommended actions to take when the subcheck does not pass.

• A line between the subcheck results.

% Sample Check 3 Callback Function: Check with Subchecks and Actions

% Find and report optimization settings

function ResultDescription = OptmizationSettingCallback(system)

% Initialize variables

system =getfullname(system);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

7-29

7 Authoring Custom Checks

mdladvObj.setCheckResultStatus(false); % Default check status is 'Warning'

ResultDescription = {};

system = bdroot(system);

% Format results in a list using Model Advisor Result Template API

% Create a list template object for first subcheck

ft1 = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results

setCheckText(ft1,['Check model configuration for optimization settings that'...

'can impact safety.']);

% Title and description of first subcheck

setSubTitle(ft1,'Verify Block reduction setting');

setInformation(ft1,'Check whether the ''Block reduction'' check box is cleared.');

% Add See Also section with references to applicable standards

docLinks{1} = {['Reference DO-178B Section 6.3.4e - Source code ' ...

'is traceable to low-level requirements']};

% Review 'Block reduction' optimization

setRefLink(ft1,docLinks);

if strcmp(get_param(system,'BlockReduction'),'off')

% 'Block reduction' is cleared

% Set subresult status to 'Pass' and display text describing the status

setSubResultStatus(ft1,'Pass');

setSubResultStatusText(ft1,'The ''Block reduction'' check box is cleared.');

ResultStatus = true;

else

% 'Block reduction' is selected

% Set subresult status to 'Warning' and display text describing the status

setSubResultStatus(ft1,'Warn');

setSubResultStatusText(ft1,'The ''Block reduction'' check box is selected.');

setRecAction(ft1,['Clear the ''Optimization > Block reduction''' ...

' check box in the Configuration Parameters dialog box.']);

ResultStatus = false;

end

ResultDescription{end+1} = ft1;

% Title and description of second subcheck

ft2 = ModelAdvisor.FormatTemplate('ListTemplate');

7-30

Creating Callback Functions and Results

setSubTitle(ft2,'Verify Conditional input branch execution setting');

setInformation(ft2,['Check whether the ''Conditional input branch execution'''...

' check box is cleared.'])

% Add See Also section and references to applicable standards

docLinks{1} = {['Reference DO-178B Section 6.4.4.2 - Test coverage ' ...

'of software structure is achieved']};

setRefLink(ft2,docLinks);

% Last subcheck, supress line

setSubBar(ft2,false);

% Check status of the 'Conditional input branch execution' check box

if strcmp(get_param(system,'ConditionallyExecuteInputs'),'off')

% The 'Conditional input branch execution' check box is cleared

% Set subresult status to 'Pass' and display text describing the status

setSubResultStatus(ft2,'Pass');

setSubResultStatusText(ft2,['The ''Conditional input branch execution''' ...

'check box is cleared.']);

else

% 'Conditional input branch execution' is selected

% Set subresult status to 'Warning' and display text describing the status

setSubResultStatus(ft2,'Warn');

setSubResultStatusText(ft2,['The ''Conditional input branch execution'''...

' check box is selected.']);

setRecAction(ft2,['Clear the ''Optimization > Conditional input branch ' ...

'execution'' check box in the Configuration Parameters dialog box.']);

ResultStatus = false;

end

ResultDescription{end+1} = ft2; % Pass list template object to Model Advisor

mdladvObj.setCheckResultStatus(ResultStatus); % Set overall check status

% Enable Modify Settings button when check fails

mdladvObj.setActionEnable(~ResultStatus);

Detailed Check Callback Function
Use the detailed check callback function to return and organize results as
strings in a layered, hierarchical fashion. The function provides two output
arguments so you can associate text descriptions with one or more paragraphs
of detailed information. The keyword for the detailed callback function is

7-31

7 Authoring Custom Checks

StyleTwo. The check definition requires this keyword (see “Defining Custom
Checks” on page 7-11).

The detailed callback function takes the following arguments.

Argument I/O Type Description

system Input Path to the model or system
analyzed by the Model Advisor.

ResultDescription Output Cell array of MATLAB strings
that supports Model Advisor
Formatting API calls or embedded
HTML tags for text formatting.
The Model Advisor concatenates
the ResultDescription string
with the corresponding array of
ResultDetails strings.

ResultDetails Output Cell array of cell arrays, each of
which contains one or more strings.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

Here is an example of a detailed check callback function that checks
optimization settings for simulation and code generation.

function [ResultDescription, ResultDetails] = SampleStyleTwoCallback(system)

ResultDescription ={};

ResultDetails ={};

model = bdroot(system);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

mdladvObj.setCheckResultStatus(true); % init result status to pass

% Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...

'optimization settings:']);

7-32

Creating Callback Functions and Results

if strcmp(get_param(model,'BlockReduction'),'off');

ResultDetails{end+1} = {ModelAdvisor.Text(['It is recommended to '...

'turn on Block reduction optimization option.',{'italic'}])};

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

else

ResultDetails{end+1} = {ModelAdvisor.Text('Passed',{'pass'})};

end

% Check code generation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check code generation '...

'optimization settings:']);

ResultDetails{end+1} = {};

if strcmp(get_param(model,'LocalBlockOutputs'),'off');

ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...

' turn on Enable local block outputs option.',{'italic'}]);

ResultDetails{end}{end+1} = ModelAdvisor.LineBreak;

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

end

if strcmp(get_param(model,'BufferReuse'),'off');

ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...

' turn on Reuse block outputs option.',{'italic'}]);

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

end

if isempty(ResultDetails{end})

ResultDetails{end}{end+1} = ModelAdvisor.Text('Passed',{'pass'});

end

Check Callback Function with Hyperlinked Results
This callback function automatically displays hyperlinks for every object
returned by the check so that you can easily locate problem areas in your
model or subsystem. The keyword for this type of callback function is
StyleThree. The check definition requires this keyword (see “Defining
Custom Checks” on page 7-11).

This callback function takes the following arguments.

7-33

7 Authoring Custom Checks

Argument I/O Type Description

system Input Path to the model or system
analyzed by the Model Advisor.

ResultDescription Output Cell array of MATLAB strings
that supports the Model Advisor
Formatting API calls or embedded
HTML tags for text formatting.

ResultDetails Output Cell array of cell arrays, each
of which contains one or more
Simulink objects such as blocks,
ports, lines, and Stateflow charts.
The objects must be in the form of a
handle or Simulink path.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

The Model Advisor automatically concatenates each string from
ResultDescription with the corresponding array of objects from
ResultDetails. The Model Advisor displays the contents of ResultDetails
as a set of hyperlinks, one for each object returned in the cell arrays. When
you click a hyperlink, the Model Advisor displays the target object highlighted
in your Simulink model.

The following is an example of a check callback function with hyperlinked
results. This example checks a model for consistent use of font type and font
size in its blocks. It also contains input parameters, actions, and a call to the
Model Advisor Result Explorer, which are described in later sections.

function [ResultDescription, ResultDetails] = SampleStyleThreeCallback(system)

ResultDescription ={};

ResultDetails ={};

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

needEnableAction = false;

7-34

Creating Callback Functions and Results

% get input parameters

inputParams = mdladvObj.getInputParameters;

skipFontCheck = inputParams{1}.Value;

regularFontSize = inputParams{2}.Value;

regularFontName = inputParams{3}.Value;

if skipFontCheck

ResultDescription{end+1} = ModelAdvisor.Paragraph('Skipped.');

ResultDetails{end+1} = {};

return

end

regularFontSize = str2double(regularFontSize);

if regularFontSize<1 || regularFontSize>=99

mdladvObj.setCheckResultStatus(false);

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Invalid font size. '...

'Please enter a value between 1 and 99']);

ResultDetails{end+1} = {};

end

% find all blocks inside current system

allBlks = find_system(system);

% block diagram doesn't have font property

% get blocks inside current system that have font property

allBlks = setdiff(allBlks, {system});

% find regular font name blocks

regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system

searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)

ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...

'use same font for blocks to ensure uniform appearance of model. '...

'The following blocks use a font other than ' regularFontName ': ']);

ResultDetails{end+1} = searchResult;

mdladvObj.setCheckResultStatus(false);

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % pull down filter name

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

7-35

7 Authoring Custom Checks

mdladvObj.setListViewParameters({myLVParam});

needEnableAction = true;

else

ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font names '...

'are identical.']);

ResultDetails{end+1} = {};

end

% find regular font size blocks

regularBlks = find_system(allBlks,'FontSize',regularFontSize);

% look for different font size blocks in the system

searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)

ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...

'use same font size for blocks to ensure uniform appearance of model. '...

'The following blocks use a font size other than ' ...

num2str(regularFontSize) ': ']);

ResultDetails{end+1} = searchResult;

mdladvObj.setCheckResultStatus(false);

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font size blocks'; % pull down filter name

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontSize'}; % name is default property

mdladvObj.setListViewParameters...

({mdladvObj.getListViewParameters{:}, myLVParam});

needEnableAction = true;

else

ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font sizes '...

'are identical.']);

ResultDetails{end+1} = {};

end

mdladvObj.setActionEnable(needEnableAction);

mdladvObj.setCheckErrorSeverity(1);

In the Model Advisor, if you run Example task with input parameter
and auto-fix ability for the slvnvdemo_mdladv model, you can view the
hyperlinked results. Clicking the first hyperlink, slvnvdemo_mdladv/Input,
displays the Simulink model with the Input block highlighted.

7-36

Creating Callback Functions and Results

Action Callback Function
An action callback function specifies the actions that the Model Advisor
performs on a model or subsystem when the user clicks the action button. You
must create one callback function for the action that you want to take.

The action callback function takes the following arguments.

Argument I/O Type Description

taskobj Input The ModelAdvisor.Task object for the check
that includes an action definition.

result Output MATLAB string that supports Model Advisor
Formatting API calls or embedded HTML tags
for text formatting.

Model Advisor Code Example: Action Callback Function
The following is an example of an action callback function that updates all of
the blocks in the model with the font specified in the Input Parameter defined
in “Model Advisor Code Example: Input Parameter Definition” on page 7-17.

% Sample Check 3 Action Callback Function: Check with Subresults and Actions

% Fix optimization settings

function result = modifyOptmizationSetting(taskobj)

% Initialize variables

result = ModelAdvisor.Paragraph();

mdladvObj = taskobj.MAObj;

system = bdroot(mdladvObj.System);

% 'Block reduction' is selected

% Clear the check box and display text describing the change

if ~strcmp(get_param(system,'BlockReduction'),'off')

set_param(system,'BlockReduction','off');

result.addItem(ModelAdvisor.Text(...

'Cleared the ''Block reduction'' check box.',{'Pass'}));

result.addItem(ModelAdvisor.LineBreak);

end

% 'Conditional input branch execution' is selected

% Clear the check box and display text describing the change

if ~strcmp(get_param(system,'ConditionallyExecuteInputs'),'off')

7-37

7 Authoring Custom Checks

set_param(system,'ConditionallyExecuteInputs','off');

result.addItem(ModelAdvisor.Text(...

'Cleared the ''Conditional input branch execution'' check box.', ...

{'Pass'}));

end

Formatting Model Advisor Results

• “Overview of Displaying Results” on page 7-38

• “Formatting Model Advisor Results” on page 7-38

• “Formatting Text” on page 7-39

• “Formatting Lists” on page 7-40

• “Formatting Tables” on page 7-40

• “Formatting Paragraphs” on page 7-41

• “Model Advisor Code Example: Formatted Output” on page 7-41

Overview of Displaying Results
You can make all of the analysis results of your custom checks
appear similar to each other with minimal scripting using the
Model Advisor ModelAdvisor.FormatTemplate class, as described in
ModelAdvisor.FormatTemplate. For examples of callback functions using the
ModelAdvisor.FormatTemplate class, see“Simple Check Callback Function”
on page 7-23.

If this format template does not meet your needs, or if you want to format
action results, use the Model Advisor Formatting API, as described in the
following sections.

Formatting Model Advisor Results
Use the Model Advisor Formatting API to produce formatted outputs in the
Model Advisor. The following constructors of the ModelAdvisor class provide
the ability to format the output. For more information on each constructor
and associated methods, in the Constructor column, click the link.

7-38

Creating Callback Functions and Results

Constructor Description

ModelAdvisor.Text Formats element text.

ModelAdvisor.Paragraph Combines elements into paragraphs.

ModelAdvisor.List Creates a list of elements.

ModelAdvisor.LineBreak Adds a line break between elements.

ModelAdvisor.Table Creates a table.

ModelAdvisor.Image Adds an image to the output.

Formatting Text
Text is the simplest form of output. You can format text in many different
ways. The default text formatting is:

• Empty

• Default color (black)

• Unformatted (not bold, italicized, underlined, linked, subscripted, or
superscripted)

To change text formatting, use the ModelAdvisor.Text constructor. When
you want one type of formatting for all text, use this syntax:

ModelAdvisor.Text(content, {attributes})

When you want multiple types of formatting, you must build the text.

t1 = ModelAdvisor.Text('It is ');

t2 = ModelAdvisor.Text('recommended', {'italic'});

t3 = ModelAdvisor.Text(' to use same font for ');

t4 = ModelAdvisor.Text('blocks', {'bold'});

t5 = ModelAdvisor.Text(' to ensure uniform appearance of model.');

result = [t1, t2, t3, t4, t5];

Add ASCII and Extended ASCII characters using the MATLAB char
command. For more information, see the ModelAdvisor.Text class page.

7-39

7 Authoring Custom Checks

Formatting Lists
You can create two types of lists: numbered and bulleted. The default list
formatting is bulleted. Use the ModelAdvisor.List constructor to create and
format lists (see ModelAdvisor.List). You can create lists with indented
subsections, formatted as either numbered or bulleted.

subList = ModelAdvisor.List();

subList.setType('numbered')

subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

topList = ModelAdvisor.List();

topList.addItem([ModelAdvisor.Text('Entry level 1',{'keyword','bold'}), subList]);

topList.addItem([ModelAdvisor.Text('Entry level 2',{'keyword','bold'}), subList]);

Formatting Tables
The default table formatting is:

• Default color (black)

• Left justified

• Bold title, row, and column headings

Change table formatting using the ModelAdvisor.Table constructor. The
following example code creates a subtable within a table.

table1 = ModelAdvisor.Table(1,1);

table2 = ModelAdvisor.Table(2,3);

table2.setHeading('Table 2');

table2.setHeadingAlign('center');

table2.setColHeading(1, 'Header 1');

table2.setColHeading(2, 'Header 2');

table2.setColHeading(3, 'Header 3');

table1.setHeading('Table 1');

table1.setEntry(1,1,table2);

7-40

Creating Callback Functions and Results

Formatting Paragraphs
You must handle paragraphs explicitly because most markup languages do
not support line breaks. The default paragraph formatting is:

• Empty

• Default color (black)

• Unformatted, (not bold, italicized, underlined, linked, subscripted, or
superscripted)

• Aligned left

If you want to change paragraph formatting, use the ModelAdvisor.Paragraph
class.

Model Advisor Code Example: Formatted Output
The following is the example from “Simple Check Callback Function” on page
7-23, reformatted using the Model Advisor Formatting API.

function result = SampleStyleOneCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

if strcmp(get_param(bdroot(system), 'ScreenColor'),'white')

result = ModelAdvisor.Text('Passed',{'pass'});

mdladvObj.setCheckResultStatus(true);

else

msg1 = ModelAdvisor.Text(...

['It is recommended to select a Simulink window screen color'...

' of white to ensure a readable and printable model. Click ']);

msg2 = ModelAdvisor.Text('here');

7-41

7 Authoring Custom Checks

msg2.setHyperlink('matlab: set_param(bdroot,''ScreenColor'',''white'')');

msg3 = ModelAdvisor.Text(' to change screen color to white.');

result = [msg1, msg2, msg3];

mdladvObj.setCheckResultStatus(false);

end

7-42

8

Creating Custom
Configurations by
Organizing Checks and
Folders

• “Overview of Creating Custom Configurations” on page 8-2

• “Organizing Checks and Folders Using the Model Advisor Configuration
Editor” on page 8-4

• “Organizing Checks and Folders Within a Customization File” on page 8-12

• “Verifying and Using Custom Configurations” on page 8-22

8 Creating Custom Configurations by Organizing Checks and Folders

Overview of Creating Custom Configurations

In this section...

“About Creating Custom Configurations” on page 8-2

“Creating Custom Configurations Workflow” on page 8-2

“Using the Model Advisor Configuration Editor Versus Customization File”
on page 8-3

About Creating Custom Configurations
The Simulink Verification and Validation product allows you to extend the
capabilities of the Model Advisor. Using Model Advisor APIs and the Model
Advisor Configuration Editor, you can:

• Customize the behavior of the Model Advisor by defining your own custom
checks, and writing your own callback functions.

• Organize checks and folders to create custom Model Advisor configurations.

• Create multiple custom configurations that you use for different projects
or modeling guidelines, and switch between these configurations in the
Model Advisor.

Creating Custom Configurations Workflow
When you create custom configurations, you:

1 Optionally author custom checks, as described in Chapter 7, “Authoring
Custom Checks”.

2 Identify which MathWorks checks you want to include in your custom
Model Advisor configuration.

3 Organize checks and folders to create custom configurations. You can
create custom configurations either using the Model Advisor Configuration
Editor (see “Organizing Checks and Folders Using the Model Advisor
Configuration Editor” on page 8-4), or within a customization file (see
“Organizing Checks and Folders Within a Customization File” on page
8-12).

8-2

Overview of Creating Custom Configurations

4 Verify the custom configuration, as described in “Verifying and Using
Custom Configurations” on page 8-22.

Using the Model Advisor Configuration Editor Versus
Customization File
The Model Advisor Configuration Editor is a GUI that expedites creating
and deploying custom configurations. While you can organize Model Advisor
configurations in a customization file, The MathWorks recommends that
you create custom configurations using the Model Advisor Configuration
Editor. For more details, see “Organizing Checks and Folders Using the
Model Advisor Configuration Editor” on page 8-4.

8-3

8 Creating Custom Configurations by Organizing Checks and Folders

Organizing Checks and Folders Using the Model Advisor
Configuration Editor

In this section...

“Overview of the Model Advisor Configuration Editor” on page 8-4

“Starting the Model Advisor Configuration Editor” on page 8-9

“How To Organize Checks and Folders Using the Model Advisor
Configuration Editor” on page 8-10

Overview of the Model Advisor Configuration Editor
When you start the Model Advisor Configuration Editor, two windows
open; the Model Advisor Configuration Editor and the Model Advisor Check
Browser. The Configuration Editor window consists of two panes: the Model
Advisor Configuration Editor hierarchy and the Workflow. The Model Advisor
Configuration Editor hierarchy lists the checks and folders in the current
configuration. The Workflow on the right shows the common workflow you
use to create a custom configuration.

8-4

Organizing Checks and Folders Using the Model Advisor Configuration Editor

Model Advisor Configuration Editor

When you select a folder or check in the Model Advisor Configuration Editor
hierarchy, the Workflow pane changes to display information about the check
or folder. You can change the display name of the check or folder in this pane.

8-5

8 Creating Custom Configurations by Organizing Checks and Folders

The Model Advisor Check Browser window includes a read-only list of
available checks. If you delete a check in the Model Advisor Configuration
Editor, you can retrieve a copy of it from the Model Advisor Check Browser.

Tip If you use a process callback function in a sl_customization file to
hide checks and folders, the Model Advisor Configuration Editor and Model
Advisor Check Browser do not display the hidden checks and folders. For a
complete list of checks and folders, remove process callback functions and
update the Simulink environment (see “Updating the Environment to Include
Your sl_customization File” on page 8-22).

8-6

Organizing Checks and Folders Using the Model Advisor Configuration Editor

Model Advisor Check Browser

Using the Model Advisor Configuration Editor, you can perform the following
actions.

To... Select...

Create new configurations File > New

Find checks and folders in the Model Advisor
Check Browser

View > Check Browser

8-7

8 Creating Custom Configurations by Organizing Checks and Folders

To... Select...

Add checks and folders to the configuration Edit > Copy
Edit > Paste
Edit > New folder
The check or folder and drag and drop

Remove checks and folders from the
configuration

Edit > Delete
Edit > Cut

Reorder checks and folders Edit > Move up
Edit > Move down
The check or folder and drag and drop

Rename checks and folders

Note The MathWorks folder display names
are restricted. When you rename a folder, you
cannot use the restricted display names.

The check or folder and edit Display Name
in right pane.

Allow or gray out the check box control for
checks and folders

Tip This capability is equivalent to enabling
checks, described in “Displaying and Enabling
Checks” on page 7-13.

Edit > Enable
Edit > Disable

Save the configuration as a MAT file for use
and distribution

File > Save
File > Save As

Set the configuration so it opens by default in
the Model Advisor

File > Set Current Configuration as
Default

Restore the MathWorks default configuration File > Restore Default Configuration

Load and edit saved configurations File > Open

8-8

Organizing Checks and Folders Using the Model Advisor Configuration Editor

Starting the Model Advisor Configuration Editor

Note

• Before starting the Model Advisor Configuration Editor, ensure that the
current folder is writable. If the folder is not writable, you see an error
message when you start the Model Advisor Configuration Editor.

• The Model Advisor Configuration Editor uses the Simulink project (slprj)
folder (for details about storing reports and other relevant information,
see “Model Reference Simulation Targets”) in the current folder. If this
folder does not exist in the current folder, the Model Advisor Configuration
Editor creates it.

1 To include custom checks in the new Model Advisor configuration, update
the Simulink environment to include your sl_customization.m file.
For more information, see “Updating the Environment to Include Your
sl_customization File” on page 8-22.

2 Start the Model Advisor Configuration Editor.

To start the
Model Advisor
Configuration
Editor...

Do this:

Programmatically At the MATLAB command line, enter
Simulink.ModelAdvisor.openConfigUI.
For more information, see the
Simulink.ModelAdvisor function reference
page.

From the Model
Advisor

1 Start the Model Advisor.
2 Select File > Open Configuration Editor.

The Model Advisor Configuration Editor and Model Advisor Check Browser
windows open.

8-9

8 Creating Custom Configurations by Organizing Checks and Folders

3 Optionally, to edit an existing configuration in the Model Advisor
Configuration Editor window:

a Select File > Open.

b In the Open dialog box, navigate to the configuration file that you want
to edit.

c Click Open.

How To Organize Checks and Folders Using the
Model Advisor Configuration Editor
The following tutorial steps you through creating a custom configuration.

1 Open the Model Advisor Configuration Editor at the MATLAB command
line by entering Simulink.ModelAdvisor.openConfigUI . For more
options, see “Starting the Model Advisor Configuration Editor” on page 8-9.

2 In the Model Advisor Configuration Editor, in the left pane, delete the By
Product and By Task folders, to start with a blank configuration.

3 Select the root node which is labeled Model Advisor Configuration Editor.

4 In the toolbar, click the New Folder button to create a folder.

5 In the left pane, select the new folder.

6 In the right pane, edit Display Name to rename the folder. For the
purposes of this tutorial, rename the folder to Review Optimizations.

7 In the Model Advisor Check Browser window, in the Find field, enter
optimization to find Simulink > Check optimization settings.

8 Drag and drop Check optimization settings into Review
Optimizations.

9 In the Model Advisor Check Browser window, find Simulink Verification
and Validation > DO-178B Checks > Check safety-related
optimization settings.

10 Drag and drop Check safety-related optimization settings into
Review Optimizations.

8-10

Organizing Checks and Folders Using the Model Advisor Configuration Editor

11 In the Model Advisor Configuration Editor window, expand Review
Optimizations.

12 Rename Check optimization settings to Check Simulink
optimization settings.

13 Select File > Save As to save the configuration.

14 Name the configuration optimization_configuration.mat.

15 Close the Model Advisor Configuration Editor window.

8-11

8 Creating Custom Configurations by Organizing Checks and Folders

Organizing Checks and Folders Within a Customization
File

In this section...

“Customization File Overview” on page 8-12

“Register Tasks and Folders” on page 8-13

“Defining Custom Tasks” on page 8-15

“Defining Custom Folders” on page 8-18

“Demo and Code Example” on page 8-20

Note While you can organize checks and folders within a customization file,
The MathWorks recommends that you use the Model Advisor Configuration
Editor. For more information, see “Using the Model Advisor Configuration
Editor Versus Customization File” on page 8-3.

Customization File Overview
The sl_customization.m file contains a set of functions for registering and
defining custom checks, tasks, and groups. To set up the sl_customization.m
file, follow the guidelines in this table.

Function Description Required or Optional

sl_customization() Registers custom checks,
tasks, folders, and
callbacks with the Simulink
customization manager at
startup (see “Register Checks
and Process Callbacks” on
page 7-6).

Required for all customizations
to the Model Advisor.

One or more check definitions Defines all custom checks (see
“Defining Custom Checks” on
page 7-11).

Required for custom checks
and to add custom checks to
the By Product folder.

8-12

Organizing Checks and Folders Within a Customization File

Function Description Required or Optional

One or more task definitions Defines all custom tasks (see
“Defining Custom Tasks” on
page 8-15).

Required to add custom checks
to the Model Advisor, except
when adding the checks to the
By Product folder. Write one
task for each check that you
add to the Model Advisor.

One or more groups Defines all custom groups (see
“Defining Custom Tasks” on
page 8-15).

Required to add custom tasks
to new folders in the Model
Advisor, except when adding
a new subfolder to the By
Product folder. Write one
group definition for each new
folder.

One process callback function Specifies actions that Simulink
performs at startup and
post-execution time (see
“Defining Startup and
Post-Execution Actions Using
Process Callback Functions”
on page 7-8).

Optional.

Register Tasks and Folders

• “Create sl_customization Function” on page 8-13

• “Registering Tasks and Folders” on page 8-14

Create sl_customization Function
To add tasks and folders to the Model Advisor, create the sl_customization.m
file on your MATLAB path. Then create the sl_customization() function in
the sl_customization.m file on your MATLAB path.

8-13

8 Creating Custom Configurations by Organizing Checks and Folders

Tip

• You can have more than one sl_customization.m file on your MATLAB
path.

• Do not place an sl_customization.m file that customizes the Model
Advisor in your root MATLAB folder or any of its subfolders, except for
the matlabroot/work folder. Otherwise, the Model Advisor ignores the
customizations that the file specifies.

The sl_customization function accepts one argument, a customization
manager object, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom
checks, tasks, folders, and process callbacks. Use these methods to register
customizations specific to your application, as described in the sections that
follow.

Registering Tasks and Folders
The customization manager provides the following methods for registering
custom tasks and folders:

• addModelAdvisorTaskFcn (@factorygroupDefinitionFcn)

Registers the tasks that you define in factorygroupDefinitionFcn to the
By Task folder of the Model Advisor.

The factorygroupDefinitionFcn argument is a handle to the function
that defines the checks to add to the Model Advisor as instances of the
ModelAdvisor.FactoryGroup class (see “Defining Custom Tasks” on page
8-15).

• addModelAdvisorTaskAdvisorFcn (@taskDefinitionFcn)

Registers the tasks and folders that you define in taskDefinitionFcn
to the folder in the Model Advisor that you specify using the
ModelAdvisor.Root.publish method or the ModelAdvisor.Group class.

8-14

Organizing Checks and Folders Within a Customization File

The taskDefinitionFcn argument is a handle to the function that
defines all custom tasks and folders. Simulink adds the checks and
folders to the Model Advisor as instances of the ModelAdvisor.Task or
ModelAdvisor.Group classes (see “Defining Custom Tasks” on page 8-15).

Note The @ sign defines a function handle that MATLAB calls. For more
information, see “At — @” in the MATLAB documentation.

Model Advisor Code Example: Registering Custom Tasks and Folders.
The following code example registers custom tasks and folders:

function sl_customization(cm)

% register custom factory group

cm.addModelAdvisorTaskFcn(@defineModelAdvisorTasks);

% register custom tasks.

cm.addModelAdvisorTaskAdvisorFcn(@defineTaskAdvisor);

Note If you add custom checks and process callbacks within the
sl_customization.m file, include methods for registering the checks and
process callbacks in the sl_customization function. For more information,
see “Register Checks and Process Callbacks” on page 7-6.

Defining Custom Tasks

• “Adding a Check to Custom or Multiple Folders Using Tasks” on page 8-16

• “Creating Custom Tasks Using MathWorks Checks” on page 8-16

• “Displaying and Enabling Tasks” on page 8-17

• “Defining Where Tasks Appear” on page 8-17

• “Model Advisor Code Example: Task Definition Function” on page 8-17

8-15

8 Creating Custom Configurations by Organizing Checks and Folders

Adding a Check to Custom or Multiple Folders Using Tasks
You can use custom tasks for adding checks to the Model Advisor, either
in multiple folders or in a single, custom folder. You define custom tasks
in one or more functions that specify the properties of each instance of the
ModelAdvisor.Task class. Define one instance of this class for each custom
task that you want to add to the Model Advisor. Then register the custom
task, as described in “Register Tasks and Folders” on page 8-13. The following
sections describe how to define custom tasks.

To add a check to multiple folders or a single, custom folder:

1 Create a check using the ModelAdvisor.Check class, as described in
“Defining Custom Checks” on page 7-11.

2 Register a task wrapper for the check, as described in “Register Tasks
and Folders” on page 8-13.

3 If you want to add the check to folders that are not already present, register
and create the folders using the ModelAdvisor.Group class.

4 Add a check to the task using the ModelAdvisor.Task.setCheck method.

5 Add the task to each folder using the ModelAdvisor.Group.addTask
method and the task ID.

Creating Custom Tasks Using MathWorks Checks
You can add MathWorks checks to your custom folders by defining the checks
as custom tasks. When you add the checks as custom tasks, you identify
checks by the check ID.

To find MathWorks check IDs:

1 In the Model Advisor, select View > Source Tab.

2 Navigate to the folder that contains the MathWorks check.

3 In the right pane, click Source. The Model Advisor displays the Title,
TitleID, and Source information for each check in the folder.

4 Select and copy the TitleID of the check that you want to add as a task.

8-16

Organizing Checks and Folders Within a Customization File

Displaying and Enabling Tasks
The Visible, Enable, and Value properties interact the same way for tasks
as they do for checks (see “Displaying and Enabling Checks” on page 7-13).

Defining Where Tasks Appear
You can specify where the Model Advisor places tasks within the Model
Advisor using the following guidelines:

• To place a task in a new folder in the Model Advisor Task Manager,
use the ModelAdvisor.Group class. See “Defining Custom Folders” on
page 8-18.

• To place a task in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class. See “Defining Custom Folders” on
page 8-18.

Model Advisor Code Example: Task Definition Function
The following is an example of a task definition function. This function defines
three tasks. The tasks are derived from the checks defined in “Model Advisor
Code Example: Check Definition Function” on page 7-15.

For an example of placing these tasks into a custom group, see “Model Advisor
Code Example: Group Definition” on page 8-19.

% Defines Model Advisor tasks and a custom folder

% Add checks to a custom folder using task definitions

function defineTaskAdvisor

mdladvRoot = ModelAdvisor.Root;

% Define task that uses Sample Check 1: Informational check

MAT1 = ModelAdvisor.Task('mathworks.example.task.configManagement');

MAT1.DisplayName = 'Informational check for model configuration management';

MAT1.Description = 'Display model configuration and checksum information.';

setCheck(MAT1, 'mathworks.example.configManagement');

mdladvRoot.register(MAT1);

% Define task that uses Sample Check 2: Basic Check with Pass/Fail Status

MAT2 = ModelAdvisor.Task('mathworks.example.task.unconnectedObjects');

MAT2.DisplayName = 'Check for unconnected objects';

8-17

8 Creating Custom Configurations by Organizing Checks and Folders

setCheck(MAT2, 'mathworks.example.unconnectedObjects');

MAT2.Description = ['Identify unconnected lines, input ports, and output ' ...

'ports in the model or subsystem.'];

mdladvRoot.register(MAT2);

% Define task that uses Sample Check 3: Check with Subresults and Actions

MAT3 = ModelAdvisor.Task('mathworks.example.task.optimizationSettings');

MAT3.DisplayName = 'Check safety-related optimization settings';

MAT3.Description = ['Check model configuration for optimization ' ...

'settings that can impact safety.'];

MAT3.setCheck('mathworks.example.optimizationSettings');

mdladvRoot.register(MAT3);

% Custom folder definition

MAG = ModelAdvisor.Group('mathworks.example.ExampleGroup');

MAG.DisplayName = 'My Group';

% Add tasks to My Group folder

addTask(MAG, MAT1);

addTask(MAG, MAT2);

addTask(MAG, MAT3);

% Add My Group folder to the Model Advisor under 'Model Advisor' (root)

mdladvRoot.publish(MAG);

Defining Custom Folders

• “About Custom Folders” on page 8-18

• “Adding Custom Folders” on page 8-19

• “Defining Where Custom Folders Appear” on page 8-19

• “Model Advisor Code Example: Group Definition” on page 8-19

About Custom Folders
Use folders to group checks in the Model Advisor by functionality or usage.
You define custom folders in:

• A factory group definition function that specifies the properties of each
instance of the ModelAdvisor.FactoryGroup class.

8-18

Organizing Checks and Folders Within a Customization File

• A task definition function that specifies the properties of each instance of
the ModelAdvisor.Group class. For more information about task definition
functions, see “Adding a Check to Custom or Multiple Folders Using Tasks”
on page 8-16.

Define one instance of the group classes for each folder that you want to
add to the Model Advisor. Then register the custom folder, as described in
“Register Tasks and Folders” on page 8-13. The following sections describe
how to define custom groups.

Adding Custom Folders
To add a custom folder:

1 Create the folder using the ModelAdvisor.Group or
ModelAdvisor.FactoryGroup classes.

2 Add the folder to the Model Advisor, as described in “Defining Custom
Folders” on page 8-18.

Defining Where Custom Folders Appear
You can specify the location of custom folders within the Model Advisor using
the following guidelines:

• To define a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

• To define a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class.

Note To define a new folder in the By Product folder, use the
ModelAdvisor.Root.publish method within a custom check. For more
information, see “Defining Where Custom Checks Appear” on page 7-14.

Model Advisor Code Example: Group Definition
The following is an example of a group definition. The definition places the
tasks defined in “Model Advisor Code Example: Task Definition Function” on

8-19

8 Creating Custom Configurations by Organizing Checks and Folders

page 8-17 inside a folder called My Group under the Model Advisor root.
The task definition function includes this group definition.

% Custom folder definition

MAG = ModelAdvisor.Group('mathworks.example.ExampleGroup');

MAG.DisplayName='My Group';

% Add tasks to My Group folder

MAG.addTask(MAT1);

MAG.addTask(MAT2);

MAG.addTask(MAT3);

% Add My Group folder to the Model Advisor under 'Model Advisor' (root)

mdladvRoot.publish(MAG);

The following is an example of a factory group definition function. The
definition places the checks defined in “Model Advisor Code Example: Check
Definition Function” on page 7-15 into a folder called Demo Factory Group
inside of the By Task folder.

function defineModelAdvisorTasks

mdladvRoot = ModelAdvisor.Root;

% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.DisplayName='Demo Factory Group';

rec.Description='Demo Factory Group';

rec.addCheck('mathworks.example.configManagement');

rec.addCheck('mathworks.example.unconnectedObjects');

rec.addCheck('mathworks.example.optimizationSettings');

mdladvRoot.publish(rec); % publish inside By Task

Demo and Code Example
The Simulink Verification and Validation software provides a demo that
shows how to customize the Model Advisor by adding:

• Custom checks

• Check input parameters

• Check actions

• Check list views to call the Model Advisor Result Explorer

8-20

Organizing Checks and Folders Within a Customization File

• Custom tasks to include the custom checks in the Model Advisor

• Custom folders for grouping the checks

• A process callback function

The demo also provides the source code of the sl_customization.m file that
executes the customizations.

To run the demo:

1 At the MATLAB command line, type slvnvdemo_mdladv.

2 Follow the instructions in the model.

8-21

8 Creating Custom Configurations by Organizing Checks and Folders

Verifying and Using Custom Configurations

In this section...

“Updating the Environment to Include Your sl_customization File” on page
8-22

“Verifying Custom Configurations” on page 8-22

Updating the Environment to Include Your
sl_customization File
When you start Simulink, it reads customization (sl_customization.m)
files. If you change the contents of your customization file, update your
environment by performing these tasks:

1 If you previously started the Model Advisor:

a Close the model from which you started the Model Advisor

b Clear the data associated with the previous Model Advisor session by
removing the slprj folder from your working folder.

2 At the MATLAB command line, enter:

sl_refresh_customizations

3 Open your model.

4 Start the Model Advisor.

Verifying Custom Configurations
To verify a custom configuration:

1 If you created custom checks, or created the custom configuration using
the sl_customization method, update the Simulink environment.
For more information, see “Updating the Environment to Include Your
sl_customization File” on page 8-22.

2 Open a model.

3 From the model window, start the Model Advisor.

8-22

Verifying and Using Custom Configurations

4 Select File > Load Configuration. If you see a warning that the Model
Advisor report corresponds to a different configuration, click Load to
continue.

5 In the Open dialog box, navigate to and select your custom configuration.
For example, if you created the custom configuration in “How To Organize
Checks and Folders Using the Model Advisor Configuration Editor” on page
8-10, select optimization_configuration.mat.

6 When the Model Advisor reopens, verify that the new configuration
contains the appropriate folders and checks. For example, the Review
Optimizations folder and the Check Simulink optimization settings
and Check safety-related optimization settings checks.

7 Optionally, run the checks.

8-23

8 Creating Custom Configurations by Organizing Checks and Folders

8-24

9

Deploying Custom
Configurations

• “Overview of Deploying Custom Configurations” on page 9-2

• “How to Deploy Custom Configurations” on page 9-3

• “Loading and Setting the Default Configuration” on page 9-4

9 Deploying Custom Configurations

Overview of Deploying Custom Configurations

In this section...

“About Deploying Custom Configurations” on page 9-2

“Deploying Custom Configurations Workflow” on page 9-2

About Deploying Custom Configurations
When you create a custom configuration, often you deploy the custom
configuration to your development group. Deploying the custom configuration
allows your development group to review models using the same checks.

After you create a custom configuration, you can use it in the Model
Advisor, or deploy the configuration to your users. You can deploy custom
configurations whether you created the configuration using the Model Advisor
Configuration Editor or within the customization file.

Deploying Custom Configurations Workflow
When you deploy custom configurations, you:

1 Optionally author custom checks, as described in Chapter 7, “Authoring
Custom Checks”.

2 Organize checks and folders to create custom configurations, as described
in Chapter 8, “Creating Custom Configurations by Organizing Checks and
Folders”.

3 Deploy the custom configuration to your users, as described in “How to
Deploy Custom Configurations” on page 9-3.

9-2

How to Deploy Custom Configurations

How to Deploy Custom Configurations
To deploy a custom configuration:

1 Determine which files to distribute. You might need to distribute more
than one file.

If You... Using the... Distribute...

Created custom checks Customization file • sl_customization.m

• Files containing
check and action
callback functions
(if separate)

Model Advisor
Configuration Editor

Configuration MAT
file

Organized checks and
folders

Customization file sl_customization.m

2 Distribute the files and tell the user to include these files on the MATLAB
path.

3 Instruct the user to load the custom configuration. For more details, see
“Loading and Setting the Default Configuration” on page 9-4.

9-3

9 Deploying Custom Configurations

Loading and Setting the Default Configuration
When you use the Model Advisor, you can load any configuration. Once you
load a configuration, you can set it to be the configuration that the Model
Advisor uses every time you open the Model Advisor.

1 Open the Model Advisor.

2 Select File > Load Configuration.

3 In the Open dialog box, navigate to and select the configuration file that
you want to edit.

4 Click Open.

Simulink reloads the Model Advisor using the new configuration.

5 Optionally, set the current configuration as the default when the Model
Advisor opens by selecting File > Set Current Configuration as
Default.

Tip You can restore the MathWorks default configuration by selecting
File > Restore Default Configuration.

9-4

10

Function Reference

Requirements Management
Interface (p. 10-2)

Access Requirements Management
Interface

Model Coverage (p. 10-3) Configure and execute model
coverage tests; store and report test
results

Model Advisor Customization API
(p. 10-5)

Customize the Model Advisor tree;
create new checks and folders

Model Advisor Result Template API
(p. 10-7)

Template for formatting Model
Advisor results

Model Advisor Formatting API
(p. 10-8)

Format Model Advisor outputs

10 Function Reference

Requirements Management Interface
rmi Interact programmatically with

Requirements Management
Interface

rmidocrename Update model requirements
document paths and file names

rminav Start Requirements Management
Interface

10-2

Model Coverage

Model Coverage

add (cv.cvtestgroup) Add cvtest objects

allNames (cv.cvdatagroup) Get names of all models
associated with cvdata objects
in cv.cvdatagroup

allNames (cv.cvtestgroup) Get names of all models associated
with cvtest objects in cvtestgroup

conditioninfo Collect condition coverage
information for model object

cv.cvdatagroup Create collection of cvdata objects
for model reference hierarchy

cv.cvtestgroup Create collection of cvtest objects
for model reference hierarchy

cvexit Exit model coverage environment

cvhtml Produce HTML report from model
coverage objects

cvload Load coverage tests and stored
results into memory

cvmodelview Display model coverage results with
model coloring

cvsave Save coverage tests and results to
file

cvsim Simulate and return model coverage
results for test objects

cvsimref Simulate and return model coverage
results for referenced models

cvtest Create model coverage test
specification object

decisioninfo Display decision coverage
information for model object

get (cv.cvdatagroup) Get cvdata object

10-3

10 Function Reference

get (cv.cvtestgroup) Get cvtest objects

getAll (cv.cvdatagroup) Get all cvdata objects

getCoverageInfo Coverage information for Simulink
Design Verifier blocks

mcdcinfo Collect modified condition/decision
coverage information for model
object

sigrangeinfo Collect signal range coverage
information for model object

tableinfo Display lookup table coverage
information for model object

10-4

Model Advisor Customization API

Model Advisor Customization API

addCheck
(ModelAdvisor.FactoryGroup)

Add check to folder

addGroup (ModelAdvisor.Group) Add subfolder to folder

addTask (ModelAdvisor.Group) Add task to folder

getID (ModelAdvisor.Check) Return check identifier

ModelAdvisor.Action Add actions to custom checks

ModelAdvisor.Check Create custom checks

ModelAdvisor.FactoryGroup Define subfolder in By Task folder

ModelAdvisor.Group Define custom folder

ModelAdvisor.InputParameter Add input parameters to custom
checks

ModelAdvisor.ListViewParameter Add list view parameters to custom
checks

ModelAdvisor.Root Identify root node

ModelAdvisor.Task Define custom tasks

publish (ModelAdvisor.Root) Publish object in Model Advisor root

register (ModelAdvisor.Root) Register object in Model Advisor root

setAction (ModelAdvisor.Check) Specify action for check

setCallbackFcn
(ModelAdvisor.Action)

Specify action callback function

setCallbackFcn
(ModelAdvisor.Check)

Specify callback function for check

setCheck (ModelAdvisor.Task) Specify check used in task

setColSpan
(ModelAdvisor.InputParameter)

Specify number of columns for input
parameter

setInputParameters
(ModelAdvisor.Check)

Specify input parameters for check

10-5

10 Function Reference

setInputParametersLayoutGrid
(ModelAdvisor.Check)

Specify layout grid for input
parameters

setRowSpan
(ModelAdvisor.InputParameter)

Specify rows for input parameter

10-6

Model Advisor Result Template API

Model Advisor Result Template API
addRow
(ModelAdvisor.FormatTemplate)

Add row to table

ModelAdvisor.FormatTemplate Construct template object for
formatting Model Advisor analysis
results

setCheckText
(ModelAdvisor.FormatTemplate)

Add description of check to result

setColTitles
(ModelAdvisor.FormatTemplate)

Add column titles to table

setInformation
(ModelAdvisor.FormatTemplate)

Add description of subcheck to result

setListObj
(ModelAdvisor.FormatTemplate)

Add list of hyperlinks to model
objects

setRecAction
(ModelAdvisor.FormatTemplate)

Add Recommended Action section
and text

setRefLink
(ModelAdvisor.FormatTemplate)

Add See Also section and links

setSubBar
(ModelAdvisor.FormatTemplate)

Add line between subcheck results

setSubResultStatus
(ModelAdvisor.FormatTemplate)

Add status to check or subcheck
result

setSubResultStatusText
(ModelAdvisor.FormatTemplate)

Add text below status in result

setSubTitle
(ModelAdvisor.FormatTemplate)

Add title for subcheck in result

setTableInfo
(ModelAdvisor.FormatTemplate)

Add data to table

setTableTitle
(ModelAdvisor.FormatTemplate)

Add title to table

10-7

10 Function Reference

Model Advisor Formatting API

addItem (ModelAdvisor.List) Add item to list

addItem (ModelAdvisor.Paragraph) Add item to paragraph

getEntry (ModelAdvisor.Table) Get table cell contents

ModelAdvisor.Image Include image in Model Advisor
output

ModelAdvisor.LineBreak Insert line break

ModelAdvisor.List Create list class

ModelAdvisor.Paragraph Create and format paragraph

ModelAdvisor.Table Create table

ModelAdvisor.Text Create Model Advisor text output

setAlign (ModelAdvisor.Paragraph) Specify paragraph alignment

setBold (ModelAdvisor.Text) Specify bold text

setColHeading (ModelAdvisor.Table) Specify table column title

setColHeadingAlign
(ModelAdvisor.Table)

Specify column title alignment

setColor (ModelAdvisor.Text) Specify text color

setColWidth (ModelAdvisor.Table) Specify column widths

setEntry (ModelAdvisor.Table) Add cell to table

setEntryAlign (ModelAdvisor.Table) Specify table cell alignment

setHeading (ModelAdvisor.Table) Specify table title

setHeadingAlign
(ModelAdvisor.Table)

Specify table title alignment

setHyperlink (ModelAdvisor.Image) Specify hyperlink location

setHyperlink (ModelAdvisor.Text) Specify hyperlinked text

setImageSource
(ModelAdvisor.Image)

Specify image location

setItalic (ModelAdvisor.Text) Italicize text

10-8

Model Advisor Formatting API

setRetainSpaceReturn
(ModelAdvisor.Text)

Retain spacing and returns in text

setRowHeading
(ModelAdvisor.Table)

Specify table row title

setRowHeadingAlign
(ModelAdvisor.Table)

Specify table row title alignment

setSubscript (ModelAdvisor.Text) Specify subscripted text

setSuperscript (ModelAdvisor.Text) Specify superscripted text

setType (ModelAdvisor.List) Specify list type

setUnderlined (ModelAdvisor.Text) Underline text

10-9

10 Function Reference

10-10

11

Class Reference

• “Model Coverage” on page 11-2

• “Model Advisor Customization API” on page 11-3

• “Model Advisor Result Template API” on page 11-4

• “Model Advisor Formatting API” on page 11-5

11 Class Reference

Model Coverage
cv.cvdatagroup Collection of cvdata objects

cv.cvtestgroup Collection of cvtest objects

11-2

Model Advisor Customization API

Model Advisor Customization API

ModelAdvisor.Action Add actions to custom checks

ModelAdvisor.Check Create custom checks

ModelAdvisor.FactoryGroup Define subfolder in By Task folder

ModelAdvisor.Group Define custom folder

ModelAdvisor.InputParameter Add input parameters to custom
checks

ModelAdvisor.ListViewParameter Add list view parameters to custom
checks

ModelAdvisor.Root Identify root node

ModelAdvisor.Task Define custom tasks

11-3

11 Class Reference

Model Advisor Result Template API

ModelAdvisor.FormatTemplate Template for formatting Model
Advisor analysis results

11-4

Model Advisor Formatting API

Model Advisor Formatting API

ModelAdvisor.Image Include image in Model Advisor
output

ModelAdvisor.LineBreak Insert line break

ModelAdvisor.List Create list class

ModelAdvisor.Paragraph Create and format paragraph

ModelAdvisor.Table Create table

ModelAdvisor.Text Create Model Advisor text output

11-5

11 Class Reference

11-6

12

Alphabetical List

cv.cvtestgroup.add

Purpose Add cvtest objects

Syntax add(cvtg, cvto1, cvto2, ...)

Description add(cvtg, cvto1, cvto2, ...) adds the cvtest objects specified
by the strings cvto1, cvto2, etc. to cvtg, which is an instantiation of
the cv.cvtestgroup class.

Example Create two cvtest objects and add them to a newly created
cv.cvtestgroup object:

cvto1 = cvtest;
cvto2 = cvtest;
cvtg = cv.cvtestgroup;
add(cvtg, cvto1, cvto2);

12-2

ModelAdvisor.FactoryGroup.addCheck

Purpose Add check to folder

Syntax addCheck(fg_obj, check_ID)

Description addCheck(fg_obj, check_ID) adds checks, identified by check_ID,
to the folder specified by fg_obj, which is an instantiation of the
ModelAdvisor.FactoryGroup class.

Examples Add three checks to rec:

% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

.

.

.

addCheck(rec, 'com.mathworks.sample.Check1');

addCheck(rec, 'com.mathworks.sample.Check2');

addCheck(rec, 'com.mathworks.sample.Check3');

12-3

ModelAdvisor.Group.addGroup

Purpose Add subfolder to folder

Syntax addGroup(group_obj, child_obj)

Description addGroup(group_obj, child_obj) adds a new subfolder, identified
by child_obj, to the folder specified by group_obj, which is an
instantiation of the ModelAdvisor.Group class.

Examples Add three checks to rec:

group_obj = ModelAdvisor.Group('com.mathworks.sample.group');
.
.
.
addGroup(group_obj, 'com.mathworks.sample.subgroup1');
addGroup(group_obj, 'com.mathworks.sample.subgroup2');
addGroup(group_obj, 'com.mathworks.sample.subgroup3');

12-4

ModelAdvisor.List.addItem

Purpose Add item to list

Syntax addItem(element)

Description addItem(element) adds items to the list created by the
ModelAdvisor.List constructor.

Inputs element Specifies an element to be added to a list in
one of the following:

• Element

• Cell array of elements. When you add a cell
array to a list, they form different rows in
the list.

• String

Example subList = ModelAdvisor.List();

setType(subList, 'numbered')

addItem(subList, ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

addItem(subList, ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-5

ModelAdvisor.Paragraph.addItem

Purpose Add item to paragraph

Syntax addItem(text, element)

Description addItem(text, element) adds an element to text. element is one
of the following:

• String

• Element

• Cell array of elements

Example Add two lines of text:

result = ModelAdvisor.Paragraph;
addItem(result, [resultText1 ModelAdvisor.LineBreak resultText2]);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-6

ModelAdvisor.FormatTemplate.addRow

Purpose Add row to table

Syntax addRow(ft_obj, {item1, item2, ..., itemn})

Description addRow(ft_obj, {item1, item2, ..., itemn}) is an optional
method that adds a row to the end of a table in the result. ft_obj is
a handle to the template object previously created. {item1, item2,
..., itemn} is a cell array of strings and objects to add to the table.
The order of the items in the array determines which column the item
is in. If you do not add data to the table, the Model Advisor does not
display the table in the result.

Note Before adding rows to a table, you must specify column titles
using the setColTitle method.

Examples Find all of the blocks in the model and create a table of the blocks:

% Create FormatTemplate object, specify table format

ft = ModelAdvisor.FormatTemplate('TableTemplate');

% Add information to the table

setTableTitle(ft, {'Blocks in Model'});

setColTitles(ft, {'Index', 'Block Name'});

% Find all the blocks in the system and add them to a table.

allBlocks = find_system(system);

for inx = 2 : length(allBlocks)

% Add information to the table

addRow(ft, {inx-1,allBlocks(inx)});

end

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-7

ModelAdvisor.Group.addTask

Purpose Add task to folder

Syntax addTask(group_obj, task_obj)

Description addTask(group_obj, task_obj) adds a task, specified by task_obj,
to the folder group_obj.group_obj is an instantiation of the
ModelAdvisor.Group class.

Example Add three tasks to MAG.

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');
addTask(MAG, MAT1);
addTask(MAG, MAT2);
addTask(MAG, MAT3);

12-8

cv.cvdatagroup.allNames

Purpose Get names of all models associated with cvdata objects in
cv.cvdatagroup

Syntax models = allNames(cvdg)

Description models = allNames(cvdg) returns a cell array of strings identifying
all model names associated with the cvdata objects in cvdg, an
instantiation of the cv.cvdatagroup class.

Examples Add three cvdata objects to cvdg and return a cell array of model names:

a = cvdata;
b = cvdata;
c = cvdata;
cvdg = cv.cvdatagroup;
add (cvdg, a, b, c);
model_names = allNames(cvdg)

12-9

cv.cvtestgroup.allNames

Purpose Get names of all models associated with cvtest objects in cvtestgroup

Syntax models = allNames(cvtg)

Description models = allNames(cvtg) returns a cell array of strings identifying
all model names associated with the cvtest objects in cvtg, an
instantiation of the cv.cvtestgroup class.

Examples Add three cvtest objects to cvtg and return a cell array of model names:

d = cvtest;
e = cvtest;
f = cvtes;
cvtg = cv.cvtestgroup;
add (cvtg, d, e, f);
model_names = allNames(cvtg)

12-10

conditioninfo

Purpose Collect condition coverage information for model object

Syntax coverage = conditioninfo(cvdo, object)
coverage = conditioninfo(cvdo, object, ignore_descendants)
[coverage, description] = conditioninfo(cvdo, object)

Description coverage = conditioninfo(cvdo, object) returns condition
coverage results from the cvdata object cvdo for the model component
specified by object.

coverage = conditioninfo(cvdo, object, ignore_descendants)
returns condition coverage results for object, depending on the value
of ignore_descendants.

[coverage, description] = conditioninfo(cvdo, object) returns
condition coverage results and textual descriptions of each condition
in object.

Inputs cvdo

cvdata object

ignore_descendants

Logical value that specifies whether to ignore the coverage of
descendant objects

1 to ignore coverage of descendant objects
0 (default) to collect coverage of descendant objects

object

An object in the Simulink model or Stateflow diagram that
receives decision coverage. Valid values for object are as follows:

BlockPath Full path to a Simulink model
or block

BlockHandle Handle to a Simulink model or
block

12-11

conditioninfo

slObj Handle to a Simulink API
object

sfID Stateflow ID

sfObj Handle to a Stateflow API
object

{BlockPath, sfID} Cell array with the path to
a Stateflow chart and the ID
of an object contained in that
chart

{BlockPath, sfObj} Cell array with the path
to a Stateflow chart and a
Stateflow object API handle
contained in that chart

[BlockHandle, sfID] Array with a Stateflow block
handle and the ID of an object
contained in that chart

Outputs coverage

The value of coverage is a two-element vector of form
[covered_outcomes total_outcomes]. coverage is empty if
cvdo does not contain condition coverage results for object. The
two elements are:

covered_outcomes Number of condition outcomes
satisfied for object

total_outcomes Total number of condition
outcomes for object

description

A structure array with the following fields:

12-12

conditioninfo

text String describing a condition
or the block port to which it
applies

trueCnts Number of times the condition
was true in a simulation

falseCnts Number of times the condition
was false in a simulation

Examples The following example opens the slvnvdemo_cv_small_controller
demo model, creates the test specification object testObj, enables
condition coverage for testObj, and executes testObj. Then retrieve
the condition coverage results for the Logic block (in the Gain
subsystem) and determine its percentage of condition outcomes covered:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.condition = 1;
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = conditioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

Alternatives To collect condition coverage for a model using the GUI:

1 Open the model for which you want condition coverage.

2 In the Model Editor, select Tools > Coverage Settings.

3 On the Coverage tab, under Coverage Metrics, select Condition
Coverage.

4 View the Results and Report tab to specify the type of output you
need.

5 Click OK.

12-13

conditioninfo

6 Simulate the model.

See Also decisioninfo | mcdcinfo | sigrangeinfo | tableinfo

How To • “Condition Coverage (CC)” on page 5-5

12-14

cv.cvdatagroup class

Purpose Collection of cvdata objects

Description Instances of this class contain a collection of cvdata objects. For more
information, see “Extracting Results from cv.cvdatagroup” on page 5-85.

Construction cv.cvdatagroup Create collection of cvdata objects
for model reference hierarchy

Methods allNames Get names of all models
associated with cvdata objects in
cv.cvdatagroup

get Get cvdata object

getAll Get all cvdata objects

Properties name cv.cvdatagroup object name

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

12-15

cv.cvdatagroup

Purpose Create collection of cvdata objects for model reference hierarchy

Syntax cvdg = cv.cvdatagroup(cvdo1, cvdo2,...)

Description cvdg = cv.cvdatagroup(cvdo1, cvdo2,...) creates an instantiation
of the cv.cvdatagroup class (cvdg) that contains the cvdata objects
cvdo1, cvdo2, etc. A cvdata object contains results of the simulation
runs.

Examples Create an instantiation of the cv.cvdatagroup class and add two
cvdata objects to it:

a = cvdata;
b = cvdata;
cvdg = cv.cvdatagroup(a, b);

12-16

cv.cvtestgroup class

Purpose Collection of cvtest objects

Description Instances of this class contain a collection of cvtest objects. For more
information, see “Creating a Test Group with cv.cvtestgroup” on page
5-84.

Construction cv.cvtestgroup Create collection of cvtest objects
for model reference hierarchy

Methods add Add cvtest objects

allNames Get names of all models
associated with cvtest objects in
cvtestgroup

get Get cvtest objects

Properties name cv.cvtestgroup object name

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

12-17

cv.cvtestgroup

Purpose Create collection of cvtest objects for model reference hierarchy

Syntax cvtg = cv.cvtestgroup(cvto1, cvto2,...)

Description cvtg = cv.cvtestgroup(cvto1, cvto2,...) creates an instantiation
of the cv.cvtestgroup class (cvtg) that contains the cvtest objects
cvto1, cvto2, etc. A cvtest object is a test specification object for a
Simulink model.

Examples Create an instantiation of the cv.cvtestgroup class and add two
cvtest objects to it:

a = cvtest;
b = cvtest;
cvtg = cv.cvtestgroup(a, b);

See Also cvtest

12-18

cvexit

Purpose Exit model coverage environment

Syntax cvexit

Description cvexit exits the model coverage environment. Issuing this command
closes the Coverage Display window and removes coloring from a block
diagram that displays its model coverage results.

12-19

cvhtml

Purpose Produce HTML report from model coverage objects

Syntax cvhtml(file, cvdo)
cvhtml(file, cvdo1, cvdo2, ...)
cvhtml(file, cvdo1, cvdo2, ..., options)
cvhtml(file, cvdo1, cvdo2, ..., options, detail)

Description cvhtml(file, cvdo) creates an HTML report of the coverage results
in the cvdata or cv.cvdatagroup object cvdo when you run model
coverage in simulation. cvhtml saves the coverage results in file. The
model must be open when you usecvhtml to generate its coverage report.

cvhtml(file, cvdo1, cvdo2, ...) creates a combined report
of several cvdata objects. The results from each object appear in
a separate column of the HTML report. Each cvdata object must
correspond to the same root model or subsystem. Otherwise, the
function fails.

cvhtml(file, cvdo1, cvdo2, ..., options) creates a combined
report of several cvdata objects using the report options specified by
options.

cvhtml(file, cvdo1, cvdo2, ..., options, detail) creates a
combined report of several cvdata objects and specifies the detail level
of the report with the value of detail.

Inputs cvdo

A cv.cvdatagroup object

detail

Specifies the level of detail in the report. Set detail to an integer
from 0 to 3. Greater numbers for detail indicate greater detail.

Default: 2

file

12-20

cvhtml

String specifying the HTML file in the MATLAB current folder
where cvhtml stores the results

Default: []

options

Specify the report options that you specify in options:

• To enable an option, set it to 1 (e.g., '-hTR=1').

• To disable an option, set it to 0 (e.g., '-bRG=0').

• To specify multiple report options, list individual options in
a single options string separated by commas or spaces (e.g.,
'-hTR=1 -bRG=0 -scm=0').

The following table lists all the options:

Option Description Default

-aTS Include each test in the model
summary

on

-bRG Produce bar graphs in the model
summary

on

-bTC Use two color bar graphs (red, blue) off

-hTR Display hit/count ratio in the model
summary

off

-nFC Do not report fully covered model
objects

off

-scm Include cyclomatic complexity
numbers in summary

on

-bcm Include cyclomatic complexity
numbers in block details

on

12-21

cvhtml

Examples Make sure you have write access to the default MATLAB
directory. Create a cumulative coverage report for the
slvnvdemo_cv_small_controller mode and save it as
ratelim_coverage.html:

model = 'slvnvdemo_cv_small_controller';
open_system(model);
cvt = cvtest(model);
cvd = cvsim(cvt);
outfile = 'ratelim_coverage.html';
cvhtml(outfile, cvd);

Alternatives To create an HTML model coverage report:

1 Open the model for which you want model coverage.

2 In the Model Editor, select Tools > Coverage Settings.

3 On the Report tab of the Coverage Settings dialog box, select
Generate HTML report.

4 Click OK.

See Also cv.cvdatagroup | cvsim

How To • “Producing HTML Reports with cvhtml” on page 5-77

12-22

cvload

Purpose Load coverage tests and stored results into memory

Syntax [cvtos, cvdos] = cvload(filename)
[cvtos, cvdos] = cvload(filename, restoretotal)

Description [cvtos, cvdos] = cvload(filename) loads the tests and data stored
in the text file filename.cvt. cvtos is a cell array of cvtest objects
that are successfully loaded. cvdos is a cell array of cvdata objects
that are successfully loaded. cvdos has the same size as cvtos, but if a
particular test has no results, cvdos can contain empty elements.

[cvtos, cvdos] = cvload(filename, restoretotal) restores or
clears the cumulative results from prior runs, depending on the value of
restoretotal. If restoretotal is 1, cvload restores the cumulative
results from prior runs. If restoretotal is unspecified or 0, cvload
clears the model’s cumulative results.

The following are special considerations for using the cvload command:

• If a model with the same name exists in the coverage database, the
software loads only the compatible results that reference the existing
model to prevent duplication.

• If the Simulink models referenced from the file are open but do not
exist in the coverage database, the coverage tool resolves the links to
the existing models.

• When you are loading several files that reference the same model,
the software loads only the results that are consistent with the
earlier files.

Examples Store coverage results in cvtest and cvdata objects:

(test_objects, data_objects) = cvload(test_results, 1);

See Also cvsave

How To • “Loading Stored Coverage Test Results with cvload” on page 5-79

12-23

cvmodelview

Purpose Display model coverage results with model coloring

Syntax cvmodelview(cvdo)

Description cvmodelview(cvdo) displays coverage results from the cvdata object
cvdo by coloring the objects in the model that have model coverage
results.

Examples Open the slvnvdemo_cv_small_controller demo model, create the
test specification object testObj, and execute testObj to collect model
coverage. Run cvmodelview to color the model objects for which you
collect model coverage information:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
data = cvsim(testObj)
cvmodelview(data)

Alternatives To display model coverage results by coloring objects:

1 Open the model.

2 Select Tools > Coverage Settings.

3 On the Coverage tab, select Coverage for this model.

4 On the Results tab, select Display coverage results using model
coloring.

5 Click OK to close the Coverage Settings dialog box.

6 Simulate the model.

See Also cvsim

How To • “Enabling the Colored Diagram Display” on page 5-69

12-24

cvmodelview

• “Displaying Model Coverage with Model Coloring” on page 5-70

12-25

cvsave

Purpose Save coverage tests and results to file

Syntax cvsave(filename, model)
cvsave(filename, cvto1, cvto2, ...)
cvsave(filename, cvdo1, cvdo2, ...)

Description cvsave(filename, model) saves all the tests (cvtest objects) and
results (cvdata objects) related to model in the text file filename.cvt.
model is a handle to or name of a Simulink model.

cvsave(filename, cvto1, cvto2, ...) saves multiple cvtest
objects in the text file filename.cvt. cvsave also saves information
about any referenced models.

cvsave(filename, cvdo1, cvdo2, ...) saves the tests and test
results for multiple cvdata objects to the text file filename.cvt.
cvsave also saves information about any referenced models.

Examples Save coverage results for the slvnvdemo_cv_small_controller model
in ratelim_testdata.cvt:

model = 'slvnvdemo_cv_small_controller';
open_system(model);
cvt = cvtest(model);
cvd = cvsim(cvt);
cvsave('ratelim_testdata', model);

Alternatives To save cumulative coverage results:

1 In the Model Editor, select Tools > Coverage Settings.

2 On the Results tab:

a Select Save cumulative results in workspace variable.

b Select Save last run in workspace variable.

3 Click OK to close the Coverage Settings dialog box.

12-26

cvsave

4 Simulate the model.

See Also cvload

How To • “Saving Test Runs to a File with cvsave” on page 5-78

12-27

cvsim

Purpose Simulate and return model coverage results for test objects

Syntax cvdo = cvsim(cvto)
[cvdo,t,x,y] = cvsim(cvto)
[cvdo,t,x,y] = cvsim(cvto, timespan, options)
[cvdo,t,x,y] = cvsim(cvto, label, setupcmd)
[cvdo1, cvdo2, ...] = cvsim(cvto1, cvto2, ...)

Description cvdo = cvsim(cvto) simulates the cvtest object cvto by starting a
simulation run for the corresponding model. The software returns the
results in the cvdata object cvdo. However, when recording coverage
for multiple models in a hierarchy, cvsim returns its results in a
cv.cvdatagroup object.

[cvdo,t,x,y] = cvsim(cvto) returns the time vector t, matrix of
state values x, and matrix of output values y from the simulation.

[cvdo,t,x,y] = cvsim(cvto, timespan, options) returns the time
vector t, matrix of state values x, and matrix of output values y from
the simulation, and overrides default simulation values with the values
for timespan and options.

[cvdo,t,x,y] = cvsim(cvto, label, setupcmd) creates the cvtest
object cvto and simulates it in one command. The arguments label
and setupcmd are passed directly to the cvtest function, which creates
the cvtest object cvto.

[cvdo1, cvdo2, ...] = cvsim(cvto1, cvto2, ...) executes the
cvtest objects cvto1, cvto2, ... and returns the results in the set of
cvdata objects cvdo1, cvdo2,

You do not have to enable model coverage reporting for the model to
use the cvsim command.

Inputs cvto

cvtest object

label

12-28

cvsim

Label for test object (passed to cvtest)

Default: []

options

Optional simulation parameters specified as a structure created
by the simset command.

setupcmd

Setup command used to create test object (passed to cvtest)

Default: []

timespan

Simulation start and stop time:

tFinal To specify the stop time. The
start time is 0.

[tStart tFinal] To specify the start and stop
times.

[tStart OutputTimes
tFinal]

To specify the start and stop
times and time points to be
returned in t.

Generally, t includes
more time points.
OutputTimes is equivalent
to specifying Configuration
Parameters > Data
Import/Export > Output
options > Produce
specified output only.

12-29

cvsim

Outputs cvdo

cvdata object

t

The simulation’s time vector

x

The simulation’s state matrix consisting of continuous states
followed by discrete states

y

The simulation’s output matrix. Each column contains the output
of a root-level Outport block, in port number order. If any Outport
block has a vector input, its output takes the appropriate number
of columns.

Examples Simulate the slvnvdemo_cv_small_controller model, get the test
data, and simulate the model with that test data. cvsim returns the
time vector, matrix of state values, and matrix of output values:

model = 'slvnvdemo_cv_small_controller';
open_system(model);
testObj = cvtest(model); %Get test data
[data, T, X, Y] = cvsim(testObj); %Get coverage data

See Also cv.cvdatagroup | cvtest | simset

How To • “Creating and Running Test Cases” on page 5-11

12-30

cvsimref

Purpose Simulate and return model coverage results for referenced models

Syntax cvdg = cvsimref(topModelName)
cvdg = cvsimref(topModelName, cvtg)
[cvdg,t,x,y] = cvsimref(topModelName, cvtg)
[cvdg,t,x,y] = cvsimref(topModelName, cvtg, timespan,

options)
[cvdg1, cvdg2, ...] = cvsimref(topModelName, cvtg1, cvtg2,

...)

Description cvdg = cvsimref(topModelName) simulates the top model and all
referenced models in the hierarchy, collects model coverage data, and
returns the results in the cv.cvdatagroup object cvdg. You do not have
to enable model coverage reporting for any of the models in a model
hierarchy to use the cvsimref command.

cvdg = cvsimref(topModelName, cvtg) simulates topModelName and
collects model coverage data by executing the cv.cvtestgroup object
cvtg. cvtg contains cvtest specifications for the top-level model and
all the referenced models in the hierarchy. cvsimref returns the model
coverage results in cvdg.

[cvdg,t,x,y] = cvsimref(topModelName, cvtg) returns the time
vector t, matrix of state values x, and matrix of output values y from
the simulation.

[cvdg,t,x,y] = cvsimref(topModelName, cvtg, timespan,
options) overrides default simulation values with the values in
timespan and options.

[cvdg1, cvdg2, ...] = cvsimref(topModelName, cvtg1, cvtg2,
...) executes multiple cv.cvtestgroup objects and returns the results
in a set of cv.cvdatagroup objects.

Inputs cvtg

cv.cvtestgroup object that contains test specifications for the
referenced models in the hierarchy

12-31

cvsimref

options

Optional simulation parameters specified as a structure created
by the simset command.

timespan

Simulation start and stop time:

tFinal Specify the stop time. The
start time is 0.

[tStart tFinal] Specify the start and stop
times.

[tStart OutputTimes
tFinal]

Specify that cvsimref return
the start and stop times and
time points in t. Generally,
t includes more time points.
OutputTimes is equivalent to
specifying Configuration
Parameters > Data
Import/Export > Output
options > Produce
specified output only.

topModelName

Name of the top-level model in the hierarchy

Outputs cvdg

cv.cvdatagroup object

t

The simulation time vector

x

The simulation state matrix consisting of continuous states
followed by discrete states

12-32

cvsimref

y

The simulation output matrix. Each column contains the output
of a root-level Outport block, in port number order. If any Outport
block has a vector input, its output takes the appropriate number
of columns.

Examples Open and simulate the slvnvdemo_ratelim_harness model and its
two subsystems:

topModel = 'slvnvdemo_cv_mutual_exclusion';
load_system(topModel);
% Make sure coverage is off for this run for the entire tree
set_param(topModel,'RecordCoverage','off');
set_param(topModel,'CovModelRefEnable','Off');
[T1, X1, Y1] = sim(topModel); % Normal data
[allData, T2, X2, Y2] = cvsimref(topModel); % cvsimref data

See Also cv.cvdatagroup | cv.cvtestgroup | cvsim | cvtest | simset

How To • “Creating and Running Test Cases” on page 5-11

• “Using Model Coverage Commands for Referenced Models” on page
5-81

12-33

cvtest

Purpose Create model coverage test specification object

Syntax cvto = cvtest(root)
cvto = cvtest(root, label)
cvto = cvtest(root, label, setupcmd)

Description cvto = cvtest(root) creates a test specification object with the handle
cvto. Simulate cvto with the cvsim command.

cvto = cvtest(root, label) creates a test object with the label
label, which is used for reporting results.

cvto = cvtest(root, label, setupcmd) creates a test object with
the setup command setupcmd.

Inputs label

Label for test object

root

The name of, or a handle to, a Simulink model or a subsystem.
Only the specified model or subsystem and its descendants are
subject to model coverage testing.

setupcmd

Setup command for creating test object. The setup command is
executed in the base MATLAB workspace just prior to running
the simulation. This command is useful for loading data prior to
a test.

Outputs cvto

A test specification object with the following structure:

Field Description

id Read-only internal ID

12-34

cvtest

Field Description

modelcov Read-only internal ID

rootPath Name of system or subsystem for
analysis

label String used when reporting results

setupCmd Command executed in base workspace
prior to simulation

settings.condition Set to 1 for condition coverage.

settings.decision Set to 1 for decision coverage.

settings.
designverifier

Set to 1 for coverage for Simulink
Design Verifier blocks.

settings.mcdc Set to 1 for MC/DC coverage.

settings.sigrange Set to 1 for signal range coverage.

settings.sigsize Set to 1 for signal size coverage.

settings.tableExec Set to 1 for lookup table coverage.

modelRefSettings.
enable

• 'off' — Disable coverage for all
referenced models.

• 'all' or on— Enable coverage for
all referenced models.

• 'filtered' — Enable coverage
only for referenced models not
listed in the excludedModels
subfield.

modelRefSettings.
excludeTopModel

Set to 1 to exclude coverage for the
top model.

modelRefSettings.
excludedModels

String specifying a comma-
separated list of referenced models for
which coverage is disabled.

12-35

cvtest

Field Description

emlSettings.
enableExternal

Set to 1 to enable coverage for external
M-files called by Embedded MATLAB
functions in your model.

options.
forceBlockReduction

Set to 1 to override the Simulink
Block reduction parameter if it is
enabled.

Examples Create a cvtest object of the Adjustable Rate Limiter block in the demo
model slvnvdemo_ratelim_harness and display its contents:

open_system('slvnvdemo_ratelim_harness');
testObj1 = cvtest(['slvnvdemo_ratelim_harness', ...

'/Adjustable Rate Limiter']);
testObj1.label = 'Gain within slew limits';
testObj1.setupCmd = 'load(''within_lim.mat'');';
testObj1.settings.mcdc = 1;
testObj1

See Also cv.cvtestgroup

How To • “Creating Tests with cvtest” on page 5-74

• “Creating a Test Group with cv.cvtestgroup” on page 5-84

12-36

decisioninfo

Purpose Display decision coverage information for model object

Syntax coverage = decisioninfo(cvdo, object)
coverage = decisioninfo(cvdo, object, ignore_descendants)
[coverage, description] = decisioninfo(cvdo, object)

Description coverage = decisioninfo(cvdo, object) returns decision coverage
results from the cvdata object cvdo for the model component specified
by object.

coverage = decisioninfo(cvdo, object, ignore_descendants)
returns decision coverage results for object, depending on the value
of ignore_descendants.

[coverage, description] = decisioninfo(cvdo, object) returns
decision coverage results and text descriptions of decision points
associated with object.

Inputs cvdo

cvdata object

ignore_descendants

Specifies to ignore the coverage of descendant objects if
ignore_descendants is set to 1.

object

The object argument specifies an object in the model or Stateflow
chart that received decision coverage. Valid values for object
include the following:

Object Specification Description

BlockPath Full path to a model or block

BlockHandle Handle to a model or block

slObj Handle to a Simulink API object

12-37

decisioninfo

Object Specification Description

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a
Stateflow chart and the ID of an
object contained in that chart

{BlockPath, sfObj} Cell array with the path to a
Stateflow chart and a Stateflow
object API handle contained in that
chart

[BlockHandle, sfID] Array with a Stateflow chart
handle and the ID of an object
contained in that chart

Outputs coverage

The value of coverage is a two-element vector of the form
[covered_outcomes total_outcomes].coverage is empty if
cvdo does not contain decision coverage results for object. The
two elements are:

covered_outcomes Number of decision outcomes
satisfied for object

total_outcomes Number of decision outcomes
for object

description

description is a structure array containing the following fields:

12-38

decisioninfo

decision.text String describing a decision
point, e.g., 'U > LL'

decision.outcome.text String describing a decision
outcome, i.e., 'true' or
'false'

decision.outcome.
executionCount

Number of times a decision
outcome occurred in a
simulation

Examples Open the slvnvdemo_cv_small_controller model and create the test
specification object testObj. Enable decision coverage for testObjand
execute testObj using cvsim. Use decisioninfo to retrieve the
decision coverage results for the Saturation block and determine the
percentage of decision outcomes covered:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.decision = 1;
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Saturation'], 'Handle');
cov = decisioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

Alternatives To collect and display decision coverage results:

1 Open the model.

2 In the Model Editor, select Tools > Coverage Settings.

3 On the Coverage tab, under Coverage Metrics, select Decision
Coverage.

4 Click OK to close the Coverage Settings dialog box.

5 Simulate the model and review the results.

12-39

decisioninfo

See Also conditioninfo | cvsim | mcdcinfo | sigrangeinfo | tableinfo

How To • “Condition Coverage (CC)” on page 5-5

12-40

cv.cvdatagroup.get

Purpose Get cvdata object

Syntax get(cvdg, model_name)

Description get(cvdg, model_name) returns the cvdata object in the
cv.cvdatagroup object cvdg that corresponds to the model specified
in model_name.

Example Get a cvdata object from the specified Simulink model:

get(cvdg, 'slvnvdemo_cv_small_controller');

12-41

cv.cvtestgroup.get

Purpose Get cvtest objects

Syntax get(cvtg, model_name)

Description get(cvtg, model_name) returns the cvtest object in the
cv.cvtestgroup object cvtg that corresponds to the model specified
in model_name.

Example Get a cvtest object from the specified Simulink model:

get(cvtg, 'slvnvdemo_cv_small_controller');

See Also cvsimref, cvtest

12-42

cv.cvdatagroup.getAll

Purpose Get all cvdata objects

Syntax getAll(cvdo)

Description getAll(cvdo) returns all cvdata objects in the cv.cvdatagroup object
cvdo.

Example Return all cvdata object from the specified Simulink model:

getAll(cvdg, 'slvnvdemo_cv_small_controller');

12-43

getCoverageInfo

Purpose Coverage information for Simulink Design Verifier blocks

Syntax [coverage, description] = getCoverageInfo(cvdo, object)
[coverage, description] = getCoverageInfo(cvdo, object,

metric)
[coverage, description] = getCoverageInfo(cvdo, object,

metric, ignore_descendants)

Description [coverage, description] = getCoverageInfo(cvdo, object)
collects Simulink Design Verifier coverage for object, based on
coverage results in cvdo. object can be a handle to any block,
subsystem, or Stateflow chart. getCoverageData returns coverage data
only for Simulink Design Verifier library blocks in object’s hierarchy.

[coverage, description] = getCoverageInfo(cvdo, object,
metric) returns coverage data for the block type specified in metric.
If object does not match the block type, getCoverageInfo does not
return any data.

[coverage, description] = getCoverageInfo(cvdo, object,
metric, ignore_descendants) returns coverage data about object,
omitting coverage data for its descendant objects if ignore_descendants
equals 1.

Inputs cvdo

cvdata object

object

In the model or Stateflow chart, object that received Simulink
Design Verifier coverage. The following are valid values for
object.

BlockPath Full path to a model or block

BlockHandle Handle to a model or block

slObj Handle to a Simulink API object

12-44

getCoverageInfo

sfID Stateflow ID from a singly
instantiated Stateflow chart

sfObj Handle to a Stateflow API
object from a singly instantiated
Stateflow chart

{BlockPath, sfID} Cell array with the path to a
Stateflow chart and the ID of an
object in that chart

{BlockPath, sfObj} Cell array with the path to a
Stateflow chart and a handle to a
Stateflow object in that chart

[BlockHandle, sfID] Array with a Stateflow chart
handle and the ID of an object in
that chart

metric

cvmetric.Sldv enumeration object with values that correspond
to Simulink Design Verifier library blocks.

test Test Objective block

proof Proof Objective block

condition Test Condition block

assumption Proof Assumption block

ignore_descendants

Boolean value that specifies to ignore the coverage of descendant
objects if set to 1.

Outputs coverage

Two-element vector of the form [covered_outcomes
total_outcomes].

12-45

getCoverageInfo

covered_outcomes Number of test objectives
satisfied for object

total_outcomes Total number of test objectives
for object

coverage is empty if cvdo does not contain decision coverage
results for object.

description

Structure array containing descriptions of each test objective, and
descriptions and execution counts for each outcome within object.

Examples Collect and display coverage data for the Test Objective block named
True in the sldvdemo_debounce_testobjblks model:

mdl = 'sldvdemo_debounce_testobjblks';

open_system(mdl)

testObj = cvtest(mdl)

testObj.settings.designverifier = 1;

data = cvsim(testObj)

blk_handle = get_param([mdl, '/True'], 'Handle');

getCoverageInfo(data, blk_handle)

Alternatives To collect and display coverage results for Simulink Design Verifier
library blocks using the Coverage Settings dialog box:

1 Open the model.

2 In the Model Editor, select Tools > Coverage Settings.

3 On the Coverage tab, under Coverage Metrics, select Simulink
Design Verifier.

4 Click OK.

5 Simulate the model and review the results.

12-46

getCoverageInfo

See Also conditioninfo | cvsim | decisioninfo | mcdcinfo | sigrangeinfo |
tableinfo

How To • “Simulink Design Verifier Coverage” on page 5-7

12-47

ModelAdvisor.Table.getEntry

Purpose Get table cell contents

Syntax content = getEntry(table, row, column)

Description content = getEntry(table, row, column) gets the contents of the
specified cell.

Inputs table Instantiation of the ModelAdvisor.Table
class

row An integer specifying the row

column An integer specifying the column

Outputs content An element object or object array specifying
the content of the table entry

Example Get the content of the table cell in the third column, third row:

table1 = ModelAdvisor.Table(4, 4);
.
.
.
content = getEntry(table1, 3, 3);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-48

ModelAdvisor.Check.getID

Purpose Return check identifier

Syntax id = getID(check_obj)

Description id = getID(check_obj) returns the ID of the check check_obj. id is a
unique string that identifies the check.

You create this unique identifier when you create the check. This unique
identifier is the equivalent of the ModelAdvisor.Check ID property.

See Also “Defining Custom Checks” on page 7-11 — Describes how to create
custom actions
Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-49

mcdcinfo

Purpose Collect modified condition/decision coverage information for model
object

Syntax coverage = mcdcinfo(cvdo, object)
coverage = mcdcinfo(cvdo, object, ignore_descendants)
[coverage, description] = mcdcinfo(cvdo, object)

Description coverage = mcdcinfo(cvdo, object) returns modified
condition/decision coverage (MC/DC) results from the cvdata object
cvdo for the model component specified by object.

coverage = mcdcinfo(cvdo, object, ignore_descendants)
returns MC/DC results for object, depending on the value of
ignore_descendants.

[coverage, description] = mcdcinfo(cvdo, object) returns
MC/DC results and text descriptions of each condition/decision in
object.

Inputs cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of
descendant objects

1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

object

The object argument specifies an object in the Simulink model or
Stateflow diagram that receives decision coverage. Valid values
for object include the following:

Object Specification Description

BlockPath Full path to a model or block

12-50

mcdcinfo

Object Specification Description

BlockHandle Handle to a model or block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a
Stateflow chart and the ID of an
object contained in that chart

{BlockPath, sfObj} Cell array with the path to a
Stateflow chart and a Stateflow
object API handle contained in
that chart

[BlockHandle, sfID] Array with a Stateflow chart
handle and the ID of an object
contained in that chart

Outputs coverage

Two-element vector of the form [covered_outcomes
total_outcomes]. coverage is empty if cvdo does not contain
modified condition/decision coverage results for object. The two
elements are:

covered_outcomes Number of condition/decision
outcomes satisfied for object

total_outcomes Total number of
condition/decision outcomes
for object

description

A structure array containing the following fields:

12-51

mcdcinfo

text String denoting whether
the condition/decision is
associated with a block output
or Stateflow transition

condition.text String describing a
condition/decision or the
block port to which it applies

condition.achieved Logical array indicating
whether a condition case has
been fully covered

condition.trueRslt String representing a condition
case expression that produces
a true result

condition.falseRslt String representing a condition
case expression that produces
a false result

Examples Collect MC/DC coverage for the slvnvdemo_cv_small_controller
model and determine the percentage of MC/DC coverage collected for
the Logic block in the Gain subsystem:

mdl = 'slvnvdemo_cv_small_controller';

open_system(mdl)

testObj = cvtest(mdl) %Create test specification object

testObj.settings.mcdc = 1; %Enable MC/DC coverage

data = cvsim(testObj) %Simulate model

blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');

cov = mcdcinfo(data, blk_handle) %Retrieve MC/DC results for Logic block

percent_cov = 100 * cov(1) / cov(2) %Percentage of MC/DC outcomes covered

Alternatives To collect MC/DC coverage for a model:

1 Open the model.

2 In the Model Editor, select Tools > Coverage Settings.

12-52

mcdcinfo

3 On the Coverage tab, under Coverage Metrics, select MCDC
Coverage.

4 On the Results and Report tabs, select the desired options.

5 Click OK to close the Coverage Settings dialog box.

6 Simulate the model and review the MC/DC coverage in the report.

See Also conditioninfo | cvsim | decisioninfo | sigrangeinfo | tableinfo

How To • “Modified Condition/Decision Coverage (MCDC)” on page 5-5

• “MCDC Analysis” on page 5-41

12-53

ModelAdvisor.Action class

Purpose Add actions to custom checks

Description Instances of this class define actions you take when the Model Advisor
checks do not pass. Users access actions by clicking the Action button
that you define in the Model Advisor window.

Construction ModelAdvisor.Action Add actions to custom checks

Methods setCallbackFcn Specify action callback function

Properties Description Message in Action box

Name Action button label

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Example % define action (fix) operation
myAction = ModelAdvisor.Action;
myAction.Name='Fix block fonts';
myAction.Description=...

'Click the button to update all blocks with specified font';

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-54

ModelAdvisor.Action

Purpose Add actions to custom checks

Syntax action_obj = ModelAdvisor.Action

Description action_obj = ModelAdvisor.Action creates a handle to an action
object.

Note

• Include an action definition in a check definition.

• Each check can contain only one action.

Example % define action (fix) operation
myAction = ModelAdvisor.Action;

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-55

ModelAdvisor.Check class

Purpose Create custom checks

Description The ModelAdvisor.Check class creates a Model Advisor check object.
All checks must have an associated ModelAdvisor.Task object to be
displayed in the Model Advisor tree.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check
in multiple locations in the Model Advisor tree. For example,
Check for implicit signal resolution is displayed in the By
Product > Simulink folder and in theBy Task > Model Referencing
folder in the Model Advisor tree.

When you use checks in task definitions, the following rules apply:

• If you define the properties of the check in the check definition
and the task definition, the task definition takes precedence. The
Model Advisor displays the information contained in the task
definition. For example, if you define the name of the check in the
task definition using the ModelAdvisor.Task.DisplayName property
and in the check definition using the ModelAdvisor.Check.Title
property, the Model Advisor displays the information provided in
ModelAdvisor.Task.DisplayName.

• If you define the properties of the check in the check definition
but not the task definition, the task uses the properties from the
check. For example, if you define the name of the check in the check
definition using the ModelAdvisor.Check.Title property, and you
register the check using a task definition, the Model Advisor displays
the information provided in ModelAdvisor.Check.Title.

• If you define the properties of the check in the task definition
but not the check definition, the Model Advisor displays the
information correctly as long as you register the task with
the Model Advisor instead of the check. For example, if you
define the name of the check in the task definition using the
ModelAdvisor.Task.DisplayName property instead of the
ModelAdvisor.Check.Title property, and you register the check

12-56

ModelAdvisor.Check class

using a task definition, the Model Advisor displays the information
provided in ModelAdvisor.Task.DisplayName.

Construction ModelAdvisor.Check Create custom checks

Methods getID Return check identifier

setAction Specify action for check

setCallbackFcn Specify callback function for
check

setInputParameters Specify input parameters for
check

setInputParametersLayoutGrid Specify layout grid for input
parameters

Properties CallbackContext Model or subsystem context

CallbackHandle Callback function handle for
check

CallbackStyle Callback function type

Enable Indicate whether user can enable
or disable check

ID Identifier for check

LicenseName Product license names required
to display and run check

ListViewVisible Status of button

Result Results cell array

Title Name of check

12-57

ModelAdvisor.Check class

TitleTips Description of check

Value Status of check

Visible Indicate to display or hide check

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-58

ModelAdvisor.Check

Purpose Create custom checks

Syntax check_obj = ModelAdvisor.Check(check_ID)

Description check_obj = ModelAdvisor.Check(check_ID) creates a check object,
check_obj, and assigns it a unique identifier, check_ID. check_IDmust
remain constant. To display checks in the Model Advisor tree, all checks
must have an associated ModelAdvisor.Task or ModelAdvisor.Root
object.

Note You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check in
multiple locations in the Model Advisor tree. For example, Check for
implicit signal resolution appears in the By Product > Simulink
folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

Example rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-59

ModelAdvisor.FactoryGroup class

Purpose Define subfolder in By Task folder

Description The ModelAdvisor.FactoryGroup class defines a new subfolder to add
to the By Task folder.

Construction ModelAdvisor.FactoryGroup Define subfolder in By Task
folder

Methods addCheck Add check to folder

Properties Description Description of folder

DisplayName Name of folder

ID Identifier for folder

MAObj Model Advisor object

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Example % --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-60

ModelAdvisor.FactoryGroup

Purpose Define subfolder in By Task folder

Syntax fg_obj = ModelAdvisor.FactoryGroup(fg_ID)

Description fg_obj = ModelAdvisor.FactoryGroup(fg_ID) creates a handle to a
factory group object, fg_obj, and assigns it a unique identifier, fg_ID.
fg_ID must remain constant.

Example % --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-61

ModelAdvisor.FormatTemplate class

Purpose Template for formatting Model Advisor analysis results

Description Use the ModelAdvisor.FormatTemplate class to format the result of
a check in the analysis result pane of the Model Advisor for a uniform
look and feel among the checks you create. There are two formats for
the analysis result:

• Table

• List

Construction ModelAdvisor.FormatTemplate Construct template object
for formatting Model Advisor
analysis results

Methods addRow Add row to table

setCheckText Add description of check to result

setColTitles Add column titles to table

setInformation Add description of subcheck to
result

setListObj Add list of hyperlinks to model
objects

setRecAction Add Recommended Action section
and text

setRefLink Add See Also section and links

setSubBar Add line between subcheck
results

setSubResultStatus Add status to check or subcheck
result

setSubResultStatusText Add text below status in result

12-62

ModelAdvisor.FormatTemplate class

setSubTitle Add title for subcheck in result

setTableInfo Add data to table

setTableTitle Add title to table

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples The following code creates two template objects, ft1 and ft2, and uses
them to format the result of running the check in a table and a list.
The result identifies the blocks in the model. The graphics following
the code display the output as it appears in the Model Advisor when
the check passes and fails.

% Sample Check With Subchecks Callback Function

function ResultDescription = SampleStyleOneCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

%Initialize variables

ResultDescription={};

ResultStatus = false; % Default check status is 'Warning'

mdladvObj.setCheckResultStatus(ResultStatus);

% Create FormatTemplate object for first subcheck, specify table format

ft1 = ModelAdvisor.FormatTemplate('TableTemplate');

% Add information describing the overall check

setCheckText(ft1, ['Find and report all blocks in the model. '...

'(setCheckText method - Description of what the check reviews)']);

% Add information describing the subcheck

setSubTitle(ft1, 'Table of Blocks (setSubTitle method - Title of the subcheck)');

setInformation(ft1, ['Find and report all blocks in a table. '...

'(setInformation method - Description of what the subcheck reviews)']);

% Add See Also section for references to standards

12-63

ModelAdvisor.FormatTemplate class

setRefLink(ft1, {{'Standard 1 reference (setRefLink method)'},

{'Standard 2 reference (setRefLink method'}});

% Add information to the table

setTableTitle(ft1, {'Blocks in the Model (setTableTitle method)'});

setColTitles(ft1, {'Index (setColTitles method)',

'Block Name (setColTitles method)'});

% Perform the check actions

allBlocks = find_system(system);

if length(find_system(system)) == 1

% Add status for subcheck

setSubResultStatus(ft1, 'Warn');

setSubResultStatusText(ft1, ['The model does not contain blocks. '...

'(setSubResultStatusText method - Description of result status)']);

setRecAction(ft1, {'Add blocks to the model. '...

'(setRecAction method - Description of how to fix the problem)'});

ResultStatus = false;

else

% Add status for subcheck

setSubResultStatus(ft1, 'Pass');

setSubResultStatusText(ft1, ['The model contains blocks. '...

'(setSubResultStatusText method - Description of result status)']);

for inx = 2 : length(allBlocks)

% Add information to the table

addRow(ft1, {inx-1,allBlocks(inx)});

end

ResultStatus = true;

end

% Pass table template object for subcheck to Model Advisor

ResultDescription{end+1} = ft1;

% Create FormatTemplate object for second subcheck, specify list format

ft2 = ModelAdvisor.FormatTemplate('ListTemplate');

% Add information describing the subcheck

12-64

ModelAdvisor.FormatTemplate class

setSubTitle(ft2, 'List of Blocks (setSubTitle method - Title of the subcheck)');

setInformation(ft2, ['Find and report all blocks in a list. '...

'(setInformation method - Description of what the subcheck reviews)']);

% Add See Also section for references to standards

setRefLink(ft2, {{'Standard 1 reference (setRefLink method)'},

{'Standard 2 reference (setRefLink method)'}});

% Last subcheck, supress line

setSubBar(ft2, false);

% Perform the subcheck actions

if length(find_system(system)) == 1

% Add status for subcheck

setSubResultStatus(ft2, 'Warn');

setSubResultStatusText(ft2, ['The model does not contain blocks. '...

'(setSubResultStatusText method - Description of result status)']);

setRecAction(ft2, {'Add blocks to the model. '...

'(setRecAction method - Description of how to fix the problem)'});

ResultStatus = false;

else

% Add status for subcheck

setSubResultStatus(ft2, 'Pass');

setSubResultStatusText(ft2, ['The model contains blocks. '...

'(setSubResultStatusText method - Description of result status)']);

% Add information to the list

setListObj(ft2, allBlocks);

end

% Pass list template object for the subcheck to Model Advisor

ResultDescription{end+1} = ft2;

% Set overall check status

mdladvObj.setCheckResultStatus(ResultStatus);

12-65

ModelAdvisor.FormatTemplate class

The following graphic displays the output as it appears in the Model
Advisor when the check passes.

12-66

ModelAdvisor.FormatTemplate class

The following graphic displays the output as it appears in the Model
Advisor when the check fails.

Alternatives Use the Model Advisor Formatting API to format check analysis
results, however The MathWorks recommends that you use the

12-67

ModelAdvisor.FormatTemplate class

ModelAdvisor.FormatTemplate class for a uniform look and feel among
the checks you create.

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-68

ModelAdvisor.FormatTemplate

Purpose Construct template object for formatting Model Advisor analysis results

Syntax obj = ModelAdvisor.FormatTemplate('type')

Description obj = ModelAdvisor.FormatTemplate('type') creates a handle, obj,
to an object of the ModelAdvisor.FormatTemplate class. type is a
string identifying the format type of the template, either list or table.
Valid values are ListTemplate and TableTemplate.

You must return the result object to the Model Advisor to display the
formatted result in the analysis result pane.

Note Use the ModelAdvisor.FormatTemplate class in check callbacks.

Examples Create a template object, ft, and use it to create a list template:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-69

ModelAdvisor.Group class

Purpose Define custom folder

Description The ModelAdvisor.Group class defines a folder that is displayed in the
Model Advisor tree. Use folders to consolidate checks by functionality
or usage.

Construction ModelAdvisor.Group Define custom folder

Methods addGroup Add subfolder to folder

addTask Add task to folder

Properties Description Description of folder

DisplayName Name of folder

ID Identifier for folder

MAObj Model Advisor object

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-70

ModelAdvisor.Group

Purpose Define custom folder

Syntax group_obj = ModelAdvisor.Group(group_ID)

Description group_obj = ModelAdvisor.Group(group_ID) creates a handle to a
group object, group_obj, and assigns it a unique identifier, group_ID.
group_ID must remain constant.

Examples MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-71

ModelAdvisor.Image class

Purpose Include image in Model Advisor output

Description The ModelAdvisor.Image class adds an image to the Model Advisor
output.

Construction ModelAdvisor.Image Include image in Model Advisor
output

Methods setHyperlink Specify hyperlink location

setImageSource Specify image location

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-72

ModelAdvisor.Image

Purpose Include image in Model Advisor output

Syntax object = ModelAdvisor.Image

Description object = ModelAdvisor.Image creates a handle to an image object,
object, that the Model Advisor displays in the output. The Model
Advisor supports many image formats, including, but not limited to,
JPEG, BMP, and GIF.

Examples image_obj = ModelAdvisor.Image;

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-73

ModelAdvisor.InputParameter class

Purpose Add input parameters to custom checks

Description Instances of the ModelAdvisor.InputParameter class specify the input
parameters a custom check uses in analyzing the model. Access input
parameters in the Model Advisor window.

Construction ModelAdvisor.InputParameter Add input parameters to custom
checks

Methods setColSpan Specify number of columns for
input parameter

setRowSpan Specify rows for input parameter

Properties Description Description of input parameter

Entries Drop-down list entries

Name Input parameter name

Type Input parameter type

Value Value of input parameter

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-74

ModelAdvisor.InputParameter

Purpose Add input parameters to custom checks

Syntax input_param = ModelAdvisor.InputParameter

Description input_param = ModelAdvisor.InputParameter creates a handle to an
input parameter object, input_param.

Note You must include input parameter definitions in a check
definition.

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model, slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

12-75

ModelAdvisor.InputParameter

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.setInputParametersLayoutGrid([3 2]);

% define input parameters

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Skip font checks.';

inputParam1.Type = 'Bool';

inputParam1.Value = false;

inputParam1.Description = 'sample tooltip';

inputParam1.setRowSpan([1 1]);

inputParam1.setColSpan([1 1]);

inputParam2 = ModelAdvisor.InputParameter;

inputParam2.Name = 'Standard font size';

inputParam2.Value='12';

inputParam2.Type='String';

inputParam2.Description='sample tooltip';

inputParam2.setRowSpan([2 2]);

inputParam2.setColSpan([1 1]);

inputParam3 = ModelAdvisor.InputParameter;

inputParam3.Name='Valid font';

inputParam3.Type='Combobox';

inputParam3.Description='sample tooltip';

inputParam3.Entries={'Arial', 'Arial Black'};

inputParam3.setRowSpan([2 2]);

inputParam3.setColSpan([2 2]);

rec.setInputParameters({inputParam1,inputParam2,inputParam3});

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-76

ModelAdvisor.LineBreak class

Purpose Insert line break

Description Use instances of the ModelAdvisor.LineBreak class to insert line
breaks in the Model Advisor outputs.

Construction ModelAdvisor.LineBreak Insert line break

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-77

ModelAdvisor.LineBreak

Purpose Insert line break

Syntax ModelAdvisor.LineBreak

Description ModelAdvisor.LineBreak inserts a line break into the Model Advisor
output.

Example Add a line break between two lines of text:

result = ModelAdvisor.Paragraph;

addItem(result, [resultText1 ModelAdvisor.LineBreak resultText2]);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-78

ModelAdvisor.List class

Purpose Create list class

Description Use instances of the ModelAdvisor.List class to create list-formatted
outputs.

Construction ModelAdvisor.List Create list class

Methods addItem Add item to list

setType Specify list type

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-79

ModelAdvisor.List

Purpose Create list class

Syntax list = ModelAdvisor.List

Description list = ModelAdvisor.List creates a list object, list.

Example subList = ModelAdvisor.List();

setType(subList, 'numbered')

addItem(subList, ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

addItem(subList, ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-80

ModelAdvisor.ListViewParameter class

Purpose Add list view parameters to custom checks

Description The Model Advisor uses list view parameters to populate the Model
Advisor Result Explorer. Access the information in list views by clicking
Explore Result in the Model Advisor window.

Construction ModelAdvisor.ListViewParameter Add list view parameters to
custom checks

Properties Attributes Attributes to display in Model
Advisor Report Explorer

Data Objects in Model Advisor Result
Explorer

Name Drop-down list entry

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model, slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

12-81

ModelAdvisor.ListViewParameter class

myLVParam.Attributes = {'FontName'}; % name is default property

mdladvObj.setListViewParameters({myLVParam});

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-82

ModelAdvisor.ListViewParameter

Purpose Add list view parameters to custom checks

Syntax lv_param = ModelAdvisor.ListViewParameter

Description lv_param = ModelAdvisor.ListViewParameter defines a list view,
lv_param.

Note Include list view parameter definitions in a check definition.

See Also “Defining Model Advisor Result Explorer Views” on page 7-18 —
Describes how to create check list views
Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Batch-Fixing Warnings or Failures” — Describes how to use list
views in the Model Advisor
“Demo and Code Example” on page 8-20 — Describes how to run a
demo that shows how to customize the Model Advisor
“getListViewParameters” — Describes how to get list view
parameters of a check
“setListViewParameters” — Describes how to set list view
parameters of a check

12-83

ModelAdvisor.Paragraph class

Purpose Create and format paragraph

Description The ModelAdvisor.Paragraph class creates and formats a paragraph
object.

Construction ModelAdvisor.Paragraph Create and format paragraph

Methods addItem Add item to paragraph

setAlign Specify paragraph alignment

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Example % Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...

'optimization settings:']);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-84

ModelAdvisor.Paragraph

Purpose Create and format paragraph

Syntax para_obj = ModelAdvisor.Paragraph

Description para_obj = ModelAdvisor.Paragraph defines a paragraph object
para_obj.

Example % Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...

'optimization settings:']);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-85

ModelAdvisor.Root class

Purpose Identify root node

Description The ModelAdvisor.Root class returns the root object.

Construction ModelAdvisor.Root Identify root node

Methods publish Publish object in Model Advisor
root

register Register object in Model Advisor
root

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-86

ModelAdvisor.Root

Purpose Identify root node

Syntax root_obj = ModelAdvisor.Root

Description root_obj = ModelAdvisor.Root creates a handle to the root object,
root_obj.

Example mdladvRoot = ModelAdvisor.Root;

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-87

ModelAdvisor.Table class

Purpose Create table

Description Instances of the ModelAdvisor.Table class create and format a table.
Specify the number of rows and columns in a table, excluding the table
title and table heading row.

Construction ModelAdvisor.Table Create table

Methods getEntry Get table cell contents

setColHeading Specify table column title

setColHeadingAlign Specify column title alignment

setColWidth Specify column widths

setEntry Add cell to table

setEntryAlign Specify table cell alignment

setHeading Specify table title

setHeadingAlign Specify table title alignment

setRowHeading Specify table row title

setRowHeadingAlign Specify table row title alignment

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-88

ModelAdvisor.Table

Purpose Create table

Syntax table = ModelAdvisor.Table(row, column)

Description table = ModelAdvisor.Table(row, column) creates a table object
(table). The Model Advisor displays the table object containing the
specified number of rows (row) and columns (column).

Examples In the following example, you create two table objects, table1 and
table2. The Model Advisor displays table1 in the results as a table
with 1 row and 1 column. The Model Advisor display table2 in the
results as a table with 2 rows and 3 columns.

table1 = ModelAdvisor.Table(1,1);
table2 = ModelAdvisor.Table(2,3);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-89

ModelAdvisor.Task class

Purpose Define custom tasks

Description The ModelAdvisor.Task class is a wrapper for a check so that you can
access the check with the Model Advisor.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check
in multiple locations in the Model Advisor tree. For example,
Check for implicit signal resolution is displayed in the By
Product > Simulink folder and in theBy Task > Model Referencing
folder in the Model Advisor tree.

When adding checks as tasks, the Model Advisor uses the task
properties instead of the check properties, except for Visible and
LicenseName.

Construction ModelAdvisor.Task Define custom tasks

Methods setCheck Specify check used in task

Properties Description Description of task

DisplayName Name of task

Enable Indicate if user can enable and
disable task

ID Identifier for task

LicenseName Product license names required
to display and run task

MAObj Model Advisor object

Value Status of task

Visible Indicate to display or hide task

12-90

ModelAdvisor.Task class

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');
MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

See Also Chapter 7, “Authoring Custom Checks” — Describes how to create
custom checks

12-91

ModelAdvisor.Task

Purpose Define custom tasks

Syntax task_obj = ModelAdvisor.Task(task_ID)

Description task_obj = ModelAdvisor.Task(task_ID) creates a task object,
task_obj, with a unique identifier, task_ID. task_ID must remain
constant. If you do not specify task_ID, the Model Advisor assigns a
random task_ID to the task object.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check in
multiple locations in the Model Advisor tree. For example, Check for
implicit signal resolution appears in the By Product > Simulink
folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

When adding checks as tasks, the Model Advisor uses the task
properties instead of the check properties, except for Visible and
LicenseName.

Examples In the following example, you create three task objects, MAT1, MAT2,
and MAT3.

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');
MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-92

ModelAdvisor.Text class

Purpose Create Model Advisor text output

Description Instances of ModelAdvisor.Text class create formatted text for the
Model Advisor output.

Construction ModelAdvisor.Text Create Model Advisor text output

Methods setBold Specify bold text

setColor Specify text color

setHyperlink Specify hyperlinked text

setItalic Italicize text

setRetainSpaceReturn Retain spacing and returns in
text

setSubscript Specify subscripted text

setSuperscript Specify superscripted text

setUnderlined Underline text

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples t1 = ModelAdvisor.Text('This is some text');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-93

ModelAdvisor.Text

Purpose Create Model Advisor text output

Syntax text = ModelAdvisor.Text(content, attribute)

Description text = ModelAdvisor.Text(content, attribute) creates a text
object for the Model Advisor output.

Inputs content Optional string specifying the content of the
text object. If content is empty, empty text
is output.

attribute Optional string specifying the formatting
of the content. If no attribute is specified,
the output text has default coloring with
no formatting. Possible formatting options
include:

• normal (default) — Text is default color
and style.

• bold — Text is bold.

• italic — Text is italicized.

• underlined— Text is underlined.

• pass — Text is green.

• warn — Text is yellow.

• fail — Text is red.

• keyword — Text is blue.

• subscript— Text is subscripted.

• superscript— Text is superscripted.

• retainspacereturn—Text retains spacing
and returns.

12-94

ModelAdvisor.Text

Outputs text The text object you create

Example text = ModelAdvisor.Text('Sub entry 1', {'pass','bold'})

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-95

ModelAdvisor.Root.publish

Purpose Publish object in Model Advisor root

Syntax publish(root_obj, check_obj, location)
publish(root_obj, group_obj)
publish(root_obj, fg_obj)

Description publish(root_obj, check_obj, location) specifies where the Model
Advisor places the check in the Model Advisor tree. location is either
one of the subfolders in the By Product folder, or the name of a new
subfolder to put in the By Product folder. Use a pipe-delimited string
to indicate multiple subfolders. For example, to add a check to the
Simulink Verification and Validation > Modeling Standards
folder, use the following string: 'Simulink Verification and
Validation|Modeling Standards'.

publish(root_obj, group_obj) specifies the ModelAdvisor.Group
object to publish as a folder in the Model Advisor Task Manager
folder.

publish(root_obj, fg_obj) specifies the
ModelAdvisor.FactoryGroup object to publish as a subfolder in the
By Task folder.

Example % publish check into By Product > Demo group.
mdladvRoot.publish(rec, 'Demo');

See Also • “Defining Where Custom Checks Appear” on page 7-14 in the
Simulink® Verification and Validation™ User’s Guide on page 1

• “Defining Where Tasks Appear” on page 8-17 in the Simulink®

Verification and Validation™ User’s Guide on page 1

• “Defining Where Custom Folders Appear” on page 8-19 in the
Simulink® Verification and Validation™ User’s Guide on page 1

12-96

ModelAdvisor.Root.register

Purpose Register object in Model Advisor root

Syntax register(MAobj, obj)

Description register(MAobj, obj) registers the object, obj, in the root object
MAobj.

In the Model Advisor memory, the register method registers the
following types of objects:

• ModelAdvisor.Check

• ModelAdvisor.Task

• ModelAdvisor.Group

• ModelAdvisor.FactoryGroup

The register method places objects in the Model Advisor memory that
you use in other functions. The register method does not place objects
in the Model Advisor tree.

Example mdladvRoot = ModelAdvisor.Root;

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task with input parameter and auto-fix ability';

MAT1.setCheck('com.mathworks.sample.Check1');

mdladvRoot.register(MAT1);

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT2.setCheck('com.mathworks.sample.Check2');

mdladvRoot.register(MAT2);

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

MAT3.setCheck('com.mathworks.sample.Check3');

mdladvRoot.register(MAT3)

12-97

rmi

Purpose Interact programmatically with Requirements Management Interface

Syntax rmi setup
reqlinks = rmi('createempty')
reqlinks = rmi('get', object)
reqlinks = rmi('get', object, group)
rmi('report', object)
rmi('set', object, reqlinks)
rmi('set', object, reqlinks, group)
rmi('cat', object, reqlinks)
cnt = rmi('count', object)
rmi('clearall', object)
rmi('clearAll', object, 'deep')
rmi register linktypename
rmi unregister linktypename
rmi linktypelist
cmdstr = rmi('navcmd', object)
[cmdstr, titlestr] = rmi('navcmd', object)
guidstr = rmi('guidget', object)
object = rmi('guidlookup', model, guidstr)
rmi('highlightModel', object)
rmi('unhighlightModel', object)
rmi('view', object, index)
dialog = rmi('edit', object)
rmi('copyObj', object)

Description rmi setup configures RMI for use with your computer and installs the
interface for use with the Telelogic® DOORS® software, if needed.

reqlinks = rmi('createempty') creates an empty instance of the
requirement links data structure.

reqlinks = rmi('get', object) returns the requirement links data
structure for object. object is the name or handle of a Simulink or
Stateflow object with which requirements can be associated.

reqlinks = rmi('get', object, group) returns the requirement
links data structure for the Signal Builder group specified by the index

12-98

rmi

group. In this case, object is the name or handle of a Signal Builder
block whose signal groups are associated with requirements.

rmi('report', object) creates an HTML report that describes the
requirements in object.

rmi('set', object, reqlinks) sets the requirement links data
structure reqlinks to object.

rmi('set', object, reqlinks, group) sets the requirement links
data structure reqlinks to the Signal Builder group specified by
the index group. In this case, object is the name or handle of a
Signal Builder block whose signal groups you want to associate with
requirements.

rmi('cat', object, reqlinks) appends the requirement links data
structure reqlinks to the end of the existing structure associated with
object. If no structure exists, RMI sets reqlinks to object.

cnt = rmi('count', object) returns the number of requirement
links associated with object.

rmi('clearall', object) removes the requirement links data
structure associated with object, deleting its requirements.

rmi('clearAll', object, 'deep') deletes all requirements links
in the model containing object.

rmi register linktypename registers the custom link type specified
by the M-file function linktypename.

rmi unregister linktypename removes the custom link type specified
by the M-file function linktypename.

rmi linktypelist displays a list of the currently registered link types.
The list indicates whether each link type is built-in or custom, and
provides the path to the M-file function used for its registration.

cmdstr = rmi('navcmd', object) returns the MATLAB command
string used to navigate to object.

12-99

rmi

[cmdstr, titlestr] = rmi('navcmd', object) returns the
MATLAB command string cmdstr and the title string titlestr that
provides descriptive text for object.

guidstr = rmi('guidget', object) returns the globally unique
identifier for object. A globally unique identifier is created for object
if it lacks one.

object = rmi('guidlookup', model, guidstr) returns the object
name in model that has the globally unique identifier guidstr.

rmi('highlightModel', object) highlights all of the objects in the
parent model of object that have requirement links.

rmi('unhighlightModel', object) removes highlighting of objects in
the parent model of object that have requirement links.

rmi('view', object, index) accesses the requirement numbered
index in the requirements document associated with object. index is
an integer that represents the nth requirement linked to object.

dialog = rmi('edit', object) displays the Requirements dialog box
for object and returns the handle of the dialog box.

rmi('copyObj', object) resets the globally unique identifier for
object, preserving its requirement links.

Inputs group

Signal Builder group index

guidstr

Globally unique model identifier

index

Integer that represents the nth requirement linked to object

object

Name or handle of a Simulink or Stateflow object with which
requirements can be associated.

12-100

rmi

reqlinks

Requirement links are represented using a MATLAB structure
array with the following fields:

doc String identifying requirements document

id String defining location in requirements
document. The first character specifies the
identifier type:

First
Character

Identifier Example

? Search text, the
first occurrence of
which is located
in requirements
document

'?Requirement
1'

@ Named item, such
as bookmark in
a Microsoft Word
file or an anchor
in an HTML file

'@my_req'

Page or item
number

'#21'

> Line number '>3156'

$ Worksheet range
in a spreadsheet

'$A2:C5'

linked Boolean value specifying whether the
requirement link is accessible for report
generation and highlighting:

1 (default). Highlight model object and include
requirement link in reports.
0

12-101

rmi

description String describing the requirement

keywords Optional string supplementing description

reqsys String identifying the link type registration
name; 'other' for built-in link types

Outputs cmdstr

MATLAB command string

cnt

Number of requirement links associated with object

dialog

Handle for object

guidstr

Globally unique model identifier

object

Name or handle of a Simulink or Stateflow object with which
requirements can be associated.

reqlinks

Requirement links are represented using a MATLAB structure
array. See “Inputs” on page 12-100 for details.

titlestr

Descriptive text for object

Examples Get a requirement associated with a block in the
slvnvdemo_fuelsys_htmreq model, change its description,
and save the requirement back to that block:

slvnvdemo_fuelsys_htmreq;

blk_with_req = ['slvnvdemo_fuelsys_htmreq/fuel rate' 10 'controller/...

Airflow calculation'];

12-102

rmi

reqts = rmi('get', blk_with_req);

reqts.description = 'Mass airflow estimation';

rmi('set', blk_with_req, reqts);

rmi('get', blk_with_req);

Add a new requirement to the block in the previous example:

new_req = rmi('createempty');

new_req.doc = 'fuelsys_requirements2.htm';

new_req.description = 'A new requirement';

rmi('cat',blk_with_req, new_req);

Create an HTML requirements report for the
slvnvdemo_fuelsys_htmreq model:

rmi('report', 'slvnvdemo_fuelsys_htmreq');

How To • Chapter 2, “Managing Model Requirements”

• “Linking to Custom Types of Requirements Documents” on page 2-40

12-103

rmidocrename

Purpose Update model requirements document paths and file names

Syntax rmidocrename(model_handle, old_path, new_path)
rmidocrename(model_name, old_path, new_path)

Description rmidocrename(model_handle, old_path, new_path) collectively
updates the links from a Simulink model to requirements files whose
names or locations have changed. model_handle is a handle to the
model that contains links to the files that you have moved or renamed.
old_path is a string that contains the existing full or partial file or
path name. new_path is a string with the new full or partial file or
path name.

rmidocrename(model_name, old_path, new_path) updates the
links to requirements files associated with model_name. You can pass
rmidocrename a model handle or a model file name.

When using the rmidocrename function, make sure to enter specific
strings for the old document name fragments so that you do not
inadvertently modify other links.

Examples For the current Simulink model, update all links to requirements
files that contain the string 'project_0220', replacing them with
'project_0221':

rmidocrename(gcs, '00000220', '00000221')

Processed 6 objects with requirements, 5 out of 13 links were modified.

Alternatives To update the requirements links one at a time, for each model object
that has a link:

1 For each object with requirements, open the Requirements dialog box
by right-clicking and selecting Requirements > Edit/Add Links.

2 Edit the Document field for each requirement that points to a
moved or renamed document.

3 Click Apply to save the changes.

12-104

rmidocrename

See Also rmi

12-105

rminav

Purpose Start Requirements Management Interface

Syntax
Note rminav will be removed in a future release. Running rminav
currently opens the Model Explorer.

12-106

ModelAdvisor.Check.setAction

Purpose Specify action for check

Syntax setAction(check_obj, action_obj)

Description setAction(check_obj, action_obj) returns the action object
action.obj to use in the check check_obj. The setAction method
identifies the action you want to use in a check.

See Also ModelAdvisor.Action — Create custom actions
Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-107

ModelAdvisor.Paragraph.setAlign

Purpose Specify paragraph alignment

Syntax setAlign(paragraph, alignment)

Description setAlign(paragraph, alignment) specifies the alignment of text.
Possible values are:

• 'left' (default)

• 'right'

• 'center'

Example report_paragraph = ModelAdvisor.Paragraph;
setAlign(report_paragraph, 'center');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-108

ModelAdvisor.Text.setBold

Purpose Specify bold text

Syntax setBold(text, mode)

Description setBold(text, mode) specifies whether text should be formatted in
bold font.

Inputs text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating bold formatting
of text:

• true— Format the text in bold font.

• false—Do not format the text in bold font.

Example t1 = ModelAdvisor.Text('This is some text');
setBold(t1, 'true');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-109

ModelAdvisor.Action.setCallbackFcn

Purpose Specify action callback function

Syntax setCallbackFcn(action_obj, @handle)

Description setCallbackFcn(action_obj, @handle) specifies the handle to the
callback function, handle, to use with the action object, action_obj.

Example
Note The following example is a fragment of code from the
sl_customization.m file for the demo model, slvnvdemo_mdladv. The
example does not execute as shown without the additional content
found in the sl_customization.m file.

rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');

% Define an automatic fix action for this check

modifyAction = ModelAdvisor.Action;

modifyAction.setCallbackFcn(@modifyOptmizationSetting);

modifyAction.Name = 'Modify Settings';

modifyAction.Description = ['Modify model configuration optimization' ...

' settings that can impact safety'];

modifyAction.Enable = true;

rec.setAction(modifyAction);

See Also “Defining Check Actions” on page 7-19 — Describes how to create
custom actions
Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“setActionenable” — Set enable/disable status for check action

12-110

ModelAdvisor.Check.setCallbackFcn

Purpose Specify callback function for check

Syntax setCallbackFcn(check_obj, @handle, context, style)

Description setCallbackFcn(check_obj, @handle, context, style) specifies
the callback function to use with the check, check_obj.

Inputs check_obj Instantiation of the ModelAdvisor.Check
class

handle Handle to a check callback function

context Context for checking the model or subsystem:

• 'None'— No special requirements.

• 'PostCompile' — The model must be
compiled.

style Type of callback function:

• 'StyleOne' — Simple check callback
function, for formatting results using
template

• 'StyleTwo' — Detailed check callback
function

• 'StyleThree'— Check callback functions
with hyperlinked results

Example % --- sample check 1

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback';

rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');

12-111

ModelAdvisor.Check.setCallbackFcn

See Also “Creating Callback Functions and Results” on page 7-22 — Describes
how to create check callback functions
Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-112

ModelAdvisor.Task.setCheck

Purpose Specify check used in task

Syntax setCheck(task, check_ID)

Description setCheck(task, check_ID) specifies the check to use in the task.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check in
multiple locations in the Model Advisor tree. For example, Check for
implicit signal resolution appears in the By Product > Simulink
folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

When adding checks as tasks, the Model Advisor uses the task
properties instead of the check properties, except for Visible and
LicenseName.

Inputs task Instantiation of the ModelAdvisor.Task class

check_ID A unique string that identifies the check to
use in the task

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
setCheck(MAT1, 'com.mathworks.sample.Check1');

12-113

ModelAdvisor.FormatTemplate.setCheckText

Purpose Add description of check to result

Syntax setCheckText(ft_obj, text)

Description setCheckText(ft_obj, text) is an optional method that adds text or
a model advisor template object as the first item in the report. Use this
method to add information describing the overall check.

Inputs ft_obj

A handle to a template object.

text

A string or a handle to a formatting object.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

text appears as the first line in the analysis result.

Examples Create a list object, ft, and add a line of text to the result:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setCheckText(ft, ['Identify unconnected lines, input ports,'...

'and output ports in the model']);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-114

ModelAdvisor.Table.setColHeading

Purpose Specify table column title

Syntax setColHeading(table, column, heading)

Description setColHeading(table, column, heading) specifies that the column
header of column is set to heading.

Inputs table Instantiation of the ModelAdvisor.Table
class

column An integer specifying the column number

heading A string, element object, or object array
specifying the table column title

Examples table1 = ModelAdvisor.Table(2, 3);
setColHeading(table1, 1, 'Header 1');
setColHeading(table1, 2, 'Header 2');
setColHeading(table1, 3, 'Header 3');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-115

ModelAdvisor.Table.setColHeadingAlign

Purpose Specify column title alignment

Syntax setColHeadingAlign(table, column, alignment)

Description setColHeadingAlign(table, column, alignment) specifies the
alignment of the column heading.

Inputs table Instantiation of the ModelAdvisor.Table
class

column An integer specifying the column number

alignment Alignment of the column heading. alignment
can have one of the following values:

• left (default)

• right

• center

Examples table1 = ModelAdvisor.Table(2, 3);
setColHeading(table1, 1, 'Header 1');
setColHeadingAlign(table1, 1, 'center');
setColHeading(table1, 2, 'Header 2');
setColHeadingAlign(table1, 2, 'center');
setColHeading(table1, 3, 'Header 3');
setColHeadingAlign(table1, 3, 'center');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-116

ModelAdvisor.Text.setColor

Purpose Specify text color

Syntax setColor(text, color)

Description setColor(text, color) sets the text color to color.

Inputs text Instantiation of the ModelAdvisor.Text class

color An enumerated string specifying the color of
the text. Possible formatting options include:

• normal (default) — Text is default color.

• pass — Text is green.

• warn — Text is yellow.

• fail — Text is red.

• keyword — Text is blue.

Example t1 = ModelAdvisor.Text('This is a warning');
setColor(t1, 'warn');

12-117

ModelAdvisor.InputParameter.setColSpan

Purpose Specify number of columns for input parameter

Syntax setColSpan(input_param, [start_col end_col])

Description setColSpan(input_param, [start_col end_col]) specifies the
number of columns that the parameter occupies. Use the setColSpan
method to specify where you want an input parameter located in the
layout grid when there are multiple input parameters.

Inputs input_param Instantiation of the
ModelAdvisor.InputParameter class

start_col A positive integer representing the first
column that the input parameter occupies in
the layout grid

end_col A positive integer representing the last
column that the input parameter occupies in
the layout grid

Example inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);

12-118

ModelAdvisor.FormatTemplate.setColTitles

Purpose Add column titles to table

Syntax setColTitles(ft_obj, {col_title_1, col_title_2, ...})

Description setColTitles(ft_obj, {col_title_1, col_title_2, ...}) is
method you must use when you create a template object that is a table
type. Use it to specify the titles of the columns in the table.

Note Before adding data to a table, you must specify column titles.

Inputs ft_obj

A handle to a template object.

col_title_N

A cell of strings or handles to formatting objects, specifying the
column titles.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The order of the col_title_N inputs determines which column
the title is in. If you do not add data to the table, the Model
Advisor does not display the table in the result.

Examples Create a table object, ft, and specify two column titles:

ft = ModelAdvisor.FormatTemplate('TableTemplate');

setColTitle(ft, {'Index', 'Block Name'});

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-119

ModelAdvisor.Table.setColWidth

Purpose Specify column widths

Syntax setColWidth(table, column, width)

Description setColWidth(table, column, width) specifies the column.

The setColWidth method specifies the table column widths relative to
the entire table width. If column widths are [1 2 3], the second column
is twice the width of the first column, and the third column is three
times the width of the first column. Unspecified columns have a default
width of 1. For example:

setColWidth(1, 1);
setColWidth(3, 2);

specifies [1 1 2] column widths.

Inputs table Instantiation of the ModelAdvisor.Table
class

column An integer specifying column number

width An integer or array of integers specifying the
column widths, relative to the entire table
width

Example table1 = ModelAdvisor.Table(2, 3)
setColWidth(table1, 1, 1);
setColWidth(table1, 3, 2);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-120

ModelAdvisor.Table.setEntry

Purpose Add cell to table

Syntax setEntry(table, row, column, string)
setEntry(table, row, column, content)

Description setEntry(table, row, column, string) adds a string to a cell in
a table.

setEntry(table, row, column, content) adds an object specified by
content to a cell in a table.

Inputs table Instantiation of the ModelAdvisor.Table
class

row An integer specifying the row

column An integer specifying the column

string A string representing the contents of the entry

content An element object or object array specifying
the content of the table entries

Example Create two tables and insert table2 into the first cell of table1:

table1 = ModelAdvisor.Table(1, 1);
table2 = ModelAdvisor.Table(2, 3);
.
.
.
setEntry(table1, 1, 1, table2);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-121

ModelAdvisor.Table.setEntryAlign

Purpose Specify table cell alignment

Syntax setEntryAlign(table, row, column, alignment)

Description setEntryAlign(table, row, column, alignment) specifies the cell
alignment of the designated cell.

Inputs table Instantiation of the ModelAdvisor.Table
class

row An integer specifying row number

column An integer specifying column number

alignment A string specifying the cell alignment.
Possible values are:

• left (default)

• right

• center

Example table1 = ModelAdvisor.Table(2,3);
setHeading(table1, 'New Table');
.
.
.
setEntry(table1, 1, 1, 'First Entry');
setEntryAlign(table1, 1, 1, 'center');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-122

ModelAdvisor.Table.setHeading

Purpose Specify table title

Syntax setHeading(table, title)

Description setHeading(table, title) specifies the table title.

Inputs table Instantiation of the ModelAdvisor.Table
class

title A string, element object, or object array that
specifies the table title

Example table1 = ModelAdvisor.Table(2, 3);
setHeading(table1, 'New Table');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-123

ModelAdvisor.Table.setHeadingAlign

Purpose Specify table title alignment

Syntax setHeadingAlign(table, alignment)

Description setHeadingAlign(table, alignment) specifies the alignment for the
table title.

Inputs table Instantiation of the ModelAdvisor.Table
class

alignment A string specifying the table title alignment.
Possible values are:

• left (default)

• right

• center

Example table1 = ModelAdvisor.Table(2, 3);
setHeading(table1, 'New Table');
setHeadingAlign(table1, 'center');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-124

ModelAdvisor.Image.setHyperlink

Purpose Specify hyperlink location

Syntax setHyperlink(image, url)

Description setHyperlink(image, url) specifies the target location of the
hyperlink associated with image.

Inputs image Instantiation of the ModelAdvisor.Image
class

url A string specifying the target URL

Example matlab_logo=ModelAdvisor.Image;
setHyperlink(matlab_logo, 'http://www.mathworks.com');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-125

ModelAdvisor.Text.setHyperlink

Purpose Specify hyperlinked text

Syntax setHyperlink(text, url)

Description setHyperlink(text, url) creates a hyperlink from the text to the
specified URL.

Inputs text Instantiation of the ModelAdvisor.Text class

url A string that specifies the target location of
the URL

Examples t1 = ModelAdvisor.Text('MathWorks home page');
setHyperlink(t1, 'http://www.mathworks.com');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-126

ModelAdvisor.Image.setImageSource

Purpose Specify image location

Syntax setImageSource(image_obj, source)

Description setImageSource(image_obj, source) specifies the location of the
image.

Inputs image_obj Instantiation of the ModelAdvisor.Image
class

source A string specifying the location of the image
file

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-127

ModelAdvisor.FormatTemplate.setInformation

Purpose Add description of subcheck to result

Syntax setInformation(ft_obj, text)

Description setInformation(ft_obj, text) is an optional method that adds
text as the first item after the subcheck title. Use this method to add
information describing the subcheck.

Inputs ft_obj

A handle to a template object.

text

A string or a handle to a formatting object, that describes the
subcheck.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The Model Advisor displays text after the title of the subcheck.

Examples Create a list object, ft, and specify a subcheck title and description:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubTitle(ft, ['Check for constructs in the model '...

'that are not supported when generating code']);

setInformation(ft, ['Identify blocks that should not '...

'be used for code generation.']);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-128

ModelAdvisor.Check.setInputParameters

Purpose Specify input parameters for check

Syntax setInputParameters(check_obj, params)

Description setInputParameters(check_obj, params) specifies
ModelAdvisor.InputParameter objects (params) to be used
as input parameters to a check (check_obj).

Inputs check_obj Instantiation of the ModelAdvisor.Check
class

params A cell array of
ModelAdvisor.InputParameters objects

Examples rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
inputParam1 = ModelAdvisor.InputParameter;
inputParam2 = ModelAdvisor.InputParameter;
inputParam3 = ModelAdvisor.InputParameter;
setInputParameters(rec, {inputParam1,inputParam2,inputParam3});

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
ModelAdvisor.InputParameter— Add input parameters to custom
checks

12-129

ModelAdvisor.Check.setInputParametersLayoutGrid

Purpose Specify layout grid for input parameters

Syntax setInputParametersLayoutGrid(check_obj, [row col])

Description setInputParametersLayoutGrid(check_obj, [row col]) specifies
the layout grid for input parameters in the Model Advisor. Use the
setInputParametersLayoutGrid method if there are multiple input
parameters.

Inputs check_obj Instantiation of the ModelAdvisor.Check
class

row Number of rows in the layout grid

col Number of columns in the layout grid

Example % --- sample check 1

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback';

rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');

rec.setInputParametersLayoutGrid([3 2]);

See Also ModelAdvisor.InputParameter— Add input parameters to custom
checks
Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-130

ModelAdvisor.Text.setItalic

Purpose Italicize text

Syntax setItalic(text, mode)

Description setItalic(text, mode) specifies whether text should be italicized.

Inputs text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating italic formatting
of text:

• true — Italicize the text.

• false— Do not italicize the text.

Example t1 = ModelAdvisor.Text('This is some text');
setItalic(t1, 'true');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-131

ModelAdvisor.FormatTemplate.setListObj

Purpose Add list of hyperlinks to model objects

Syntax setListObj(ft_obj, {model_obj})

Description setListObj(ft_obj, {model_obj}) is an optional method that
generates a bulleted list of hyperlinks to model objects. ft_obj is a
handle to a list template object. model_obj is a cell array of handles or
full paths to blocks, or model objects that the Model Advisor displays
as a bulleted list of hyperlinks in the report.

Examples Create a list object, ft, and add a list of the blocks found in the model:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Find all the blocks in the system

allBlocks = find_system(system);

% Add the blocks to a list

setListObj(ft, allBlocks);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-132

ModelAdvisor.FormatTemplate.setRecAction

Purpose Add Recommended Action section and text

Syntax setRecAction(ft_obj, {text})

Description setRecAction(ft_obj, {text}) is an optional method that adds a
Recommended Action section to the report. Use this method to describe
how to fix the check.

Inputs ft_obj

A handle to a template object.

text

A cell array of strings or handles to formatting objects, that
describes the recommended action to fix the issues reported by
the check.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The Model Advisor displays the recommended action as a separate
section below the list or table in the report.

Examples Create a list object, ft, find Gain blocks in the model, and recommend
changing them:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Find all Gain blocks

gainBlocks = find_system(gcs, 'BlockType','Gain');

% Find Gain blocks with expression evaluates to 1

for idx = 1:length(gainBlocks)

gainObj = get_param(gainBlocks(idx), 'Object');

resGain = slResolve(gainObj.Gain, gainObj.getFullName);

if ~isempty(resGain)

% Find the first index that computes to 1

12-133

ModelAdvisor.FormatTemplate.setRecAction

if ~isempty(find(resGain == 1, 1))

setRecAction(ft, {'If you are using these blocks '...

'as buffers, you should replace them with '...

'Signal Conversion blocks'});

end

end

end

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-134

ModelAdvisor.FormatTemplate.setRefLink

Purpose Add See Also section and links

Syntax setRefLink(ft_obj, {{’standard’}})
setRefLink(ft_obj, {{’url’, ’standard’}})

Description setRefLink(ft_obj, {{’standard’}}) is an optional method that
adds a See Also section above the table or list in the result. Use this
method to add references to standards. ft_obj is a handle to a template
object. standard is a cell array of strings that you want to display in
the result. If you include more than one cell, the Model Advisor displays
the strings in a bulleted list.

setRefLink(ft_obj, {{’url’, ’standard’}}) generates a list of
links in the See Also section. url is a string that indicates the location
to link to. You must provide the full link including the protocol.
For example, http:\\www.mathworks.com is a valid link, while
www.mathworks.com is not a valid link. You can create a link to any
protocol that is valid URL, such as a web site address, a full path to
a file, or a relative path to a file.

Note setRefLink expects a cell array of cell arrays for the second
input.

Examples Create a list object, ft, and add a related standard:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setRefLink(ft, {{'IEC 61508-3, Table A.3 (3) ''Language subset'''}});

Create a list object, ft, and add a list of related standards:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setRefLink(ft, {

{'IEC 61508-3, Table A.3 (2) ''Strongly typed programming language'''},...

{'IEC 61508-3, Table A.3 (3) ''Language subset'''}});

12-135

ModelAdvisor.FormatTemplate.setRefLink

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-136

ModelAdvisor.Text.setRetainSpaceReturn

Purpose Retain spacing and returns in text

Syntax setRetainSpaceReturn(text, mode)

Description setRetainSpaceReturn(text, mode) specifies whether the text must
retain the spaces and carriage returns.

Inputs text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating whether to
preserve spaces and carriage returns in the
text:

• true (default) — Preserve spaces and
carriage returns.

• false — Do not preserve spaces and
carriage returns.

Example t1 = ModelAdvisor.Text('MathWorks home page');
setRetainSpaceReturn(t1, 'true');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-137

ModelAdvisor.Table.setRowHeading

Purpose Specify table row title

Syntax setRowHeading(table, row, heading)

Description setRowHeading(table, row, heading) specifies a title for the
designated table row.

Inputs table Instantiation of the ModelAdvisor.Table
class

row An integer specifying row number

heading A string, element object, or object array
specifying the table row title

Example table1 = ModelAdvisor.Table(2,3);
setRowHeading(table1, 1, 'Row 1 Title');
setRowHeading(table1, 2, 'Row 2 Title');
setRowHeading(table1, 3, 'Row 3 Title');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-138

ModelAdvisor.Table.setRowHeadingAlign

Purpose Specify table row title alignment

Syntax setRowHeadingAlign(table, row, alignment)

Description setRowHeadingAlign(table, row, alignment) specifies the
alignment for the designated table row.

Inputs table Instantiation of the ModelAdvisor.Table
class

row An integer specifying row number.

alignment A string specifying the cell alignment.
Possible values are:

• left (default)

• right

• center

Examples table1 = ModelAdvisor.Table(2, 3);
setRowHeading(table1, 1, 'Row 1 Title');
setRowHeadingAlign(table1, 1, 'center');
setRowHeading(table1, 2, 'Row 2 Title');
setRowHeadingAlign(table1, 2, 'center');
setRowHeading(table1, 3, 'Row 3 Title');
setRowHeadingAlign(table1, 3, 'center');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-139

ModelAdvisor.InputParameter.setRowSpan

Purpose Specify rows for input parameter

Syntax setRowSpan(input_param, [start_row end_row])

Description setRowSpan(input_param, [start_row end_row]) specifies the
number of rows that the parameter occupies. Specify where you want
an input parameter located in the layout grid when there are multiple
input parameters.

Inputs input_param The input parameter object

start_row A positive integer representing the first row
that the input parameter occupies in the
layout grid

end_row A positive integer representing the last row
that the input parameter occupies in the
layout grid

Examples inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);

12-140

ModelAdvisor.FormatTemplate.setSubBar

Purpose Add line between subcheck results

Syntax setSubBar(ft_obj, value)

Description setSubBar(ft_obj, value) is an optional method that adds lines
between results for subchecks. ft_obj is a handle to a template object.
value is a boolean value that specifies when the Model Advisor includes
a line between subchecks in the check results. By default, the value is
true, and the Model Advisor displays the bar. The Model Advisor does
not display the bar when you set the value to false.

Examples Create a list object, ft, turn off the subbar:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubBar(ft, false);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-141

ModelAdvisor.FormatTemplate.setSubResultStatus

Purpose Add status to check or subcheck result

Syntax setSubResultStatus(ft_obj, 'status')

Description setSubResultStatus(ft_obj, 'status') is an optional method that
displays the status in the result. Use this method to display the status
of the check or subcheck in the result. ft_obj is a handle to a template
object. status is a string identifying the status of the check. Valid
strings are:

Pass
Warn
Fail

Examples Create a list object, ft, and add a passing status:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubResutlStatus(ft, 'Pass');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-142

ModelAdvisor.FormatTemplate.setSubResultStatusText

Purpose Add text below status in result

Syntax setSubResultStatusText(ft_obj, message)

Description setSubResultStatusText(ft_obj, message) is an optional method
that displays text below the status in the result. Use this method to
describe the status.

Inputs ft_obj

A handle to a template object.

message

A string or a handle to a formatting object that the Model Advisor
displays below the status in the report.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

Examples Create a list object, ft, add a passing status and a description of why
the check passed:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubResutlStatus(ft, 'Pass');

setSubResultStatusText(ft, ['Constructs that are not supported when '...

'generating code were not found in the model or subsystem']);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-143

ModelAdvisor.Text.setSubscript

Purpose Specify subscripted text

Syntax setSubscript(text, mode)

Description setSubscript(text, mode) indicates whether to make text subscript.

Inputs text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating subscripted
formatting of text:

• true— Make the text subscript.

• false— Do not make the text subscript.

Example t1 = ModelAdvisor.Text('This is some text');
setSubscript(t1, 'true');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-144

ModelAdvisor.Text.setSuperscript

Purpose Specify superscripted text

Syntax setSuperscript(text, mode)

Description setSuperscript(text, mode) indicates whether to make text
subscript.

Inputs text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating superscripted
formatting of text:

• true— Make the text superscript.

• false— Do not make the text superscript.

Example t1 = ModelAdvisor.Text('This is some text');
setSuperscript(t1, 'true');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-145

ModelAdvisor.FormatTemplate.setSubTitle

Purpose Add title for subcheck in result

Syntax setSubTitle(ft_obj, title)

Description setSubTitle(ft_obj, title) is an optional method that adds a
subcheck result title. Use this method when you create subchecks to
distinguish between them in the result.

Inputs ft_obj

A handle to a template object.

title

A string or a handle to a formatting object specifying the title of
the subcheck.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

Examples Create a list object, ft, and add a subcheck title:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubTitle(ft, ['Check for constructs in the model '...

'that are not supported when generating code']);

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-146

ModelAdvisor.FormatTemplate.setTableInfo

Purpose Add data to table

Syntax setTableInfo(ft_obj, {data})

Description setTableInfo(ft_obj, {data}) is an optional method that creates a
table. ft_obj is a handle to a table template object. data is a cell array
of strings or objects specifying the information in the body of the table.
The Model Advisor creates hyperlinks to objects. If you do not add data
to the table, the Model Advisor does not display the table in the result.

Note Before creating a table, you must specify column titles using
the setColTitle method.

Examples Create a table object, ft, add column titles, and add data to the table:

ft = ModelAdvisor.FormatTemplate('TableTemplate');

setColTitle(ft, {'Index', 'Block Name'});

setTableInfo(ft, {'1', 'Gain'});

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-147

ModelAdvisor.FormatTemplate.setTableTitle

Purpose Add title to table

Syntax setTableTitle(ft_obj, title)

Description setTableTitle(ft_obj, title) is an optional method that adds a
title to a table.

Inputs ft_obj

A handle to a template object.

title

A string or a handle to a formatting object specifying the title of
the table.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The title appears above the table. If you do not add data to the
table, the Model Advisor does not display the table and title in
the result.

Examples Create a table object, ft, and add a table title:

ft = ModelAdvisor.FormatTemplate('TableTemplate');

setTitleTitle(ft, 'Table of fonts and styles used in model');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks
“Formatting Model Advisor Results” on page 7-38 — Describes how
to format Model Advisor results

12-148

ModelAdvisor.List.setType

Purpose Specify list type

Syntax setType(list_obj, listType)

Description setType(list_obj, listType) specifies the type of list the
ModelAdvisor.List constructor creates.

Inputs list_obj Instantiation of the ModelAdvisor.List class

listType Specifies the list type:

• numbered

• bulleted

Example subList = ModelAdvisor.List();

subList.setType('numbered')

subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-149

ModelAdvisor.Text.setUnderlined

Purpose Underline text

Syntax setUnderlined(text, mode)

Description setUnderlined(text, mode) indicates whether to underline text.

Inputs text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating underlined
formatting of text:

• true — Underline the text.

• false— Do not underline the text.

Example t1 = ModelAdvisor.Text('This is some text');
setUnderlined(t1, 'true');

See Also Customizing the Model Advisor on page 1 — Describes how to create
custom checks

12-150

sigrangeinfo

Purpose Collect signal range coverage information for model object

Syntax [min, max] = sigrangeinfo(cvdo, object)
[min, max] = sigrangeinfo(cvdo, object, portID)

Description [min, max] = sigrangeinfo(cvdo, object) returns the minimum
and maximum signal values output by the model component object
within the cvdata object cvdo.

[min, max] = sigrangeinfo(cvdo, object, portID) returns the
minimum and maximum signal values associated with the output port
portID of the Simulink block object.

Inputs cvdo

cvdata object

object

An object in the model or Stateflow chart that received decision
coverage. Valid values for object include the following:

Object Specification Description

BlockPath Full path to a model or block

BlockHandle Handle to a model or block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a
Stateflow block and the ID of an
object contained in that chart

12-151

sigrangeinfo

Object Specification Description

{BlockPath, sfObj} Cell array with the path to a
Stateflow chart and a Stateflow
object API handle contained in that
chart

[BlockHandle, sfID] Array with a Stateflow chart handle
and the ID of an object contained in
that chart

portID

Output port of the block object

Outputs max

Maximum signal values output by the model component object
within the cvdata object cvdo. If object outputs a vector, min
and max are also vectors.

min

Minimum signal values output by the model component object
within the cvdata object cvdo. If object outputs a vector, min
and max are also vectors.

Examples Collect signal range data for the Product block in the
slvnvdemo_cv_small_controller model:

mdl = 'slvnvdemo_cv_small_controller';

open_system(mdl)

testObj = cvtest(mdl) %Create test spec object

testObj.settings.sigrange = 1; %Enable MC/DC coverage

data = cvsim(testObj) %Simulate the model

blk_handle = get_param([mdl, '/Product'], 'Handle');

[minVal, maxVal] = sigrangeinfo(data, blk_handle) %Get signal range data

See Also conditioninfo | cvsim | decisioninfo | mcdcinfo | tableinfo

12-152

tableinfo

Purpose Display lookup table coverage information for model object

Syntax coverage = tableinfo(cvdo, object)
coverage = tableinfo(cvdo, object, ignore_descendants)
[coverage, exeCounts] = tableinfo(cvdo, object)
[coverage, exeCounts, brkEquality] = tableinfo(cvdo, object)

Description coverage = tableinfo(cvdo, object) returns lookup table coverage
results from the cvdata object cvdo for the model component object.

coverage = tableinfo(cvdo, object, ignore_descendants)
returns lookup table coverage results for object, depending on the
value of ignore_descendants.

[coverage, exeCounts] = tableinfo(cvdo, object) returns
lookup table coverage results and the execution count for each
interpolation/extrapolation interval in the lookup table block object.

[coverage, exeCounts, brkEquality] = tableinfo(cvdo,
object) returns lookup table coverage results, the execution count for
each interpolation/extrapolation interval, and the execution counts for
breakpoint equality.

Inputs cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of
descendant objects

1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

object

Full path or handle to a lookup table block or a model containing
a lookup table block.

12-153

tableinfo

Outputs brkEquality

A cell array containing vectors that identify the number of
times during simulation that the lookup table block input was
equivalent to a breakpoint value. Each vector represents the
breakpoints along a different lookup table dimension.

coverage

The value of coverage is a two-element vector of form
[covered_intervals total_intervals], the elements of which
are:

covered_intervals Number of
interpolation/extrapolation
intervals satisfied for object

total_intervals Total number of
interpolation/extrapolation
intervals for object

coverage is empty if cvdo does not contain lookup table coverage
results for object.

execounts

An array having the same dimensionality as the lookup table
block; its size has been extended to allow for the lookup table
extrapolation intervals.

Examples Collect lookup table coverage for the slvnvdemo_cv_small_controller
model and determine the percentage of interpolation/extrapolation
intervals coverage collected for the Gain Table block in the Gain
subsystem:

mdl = 'slvnvdemo_cv_small_controller';

open_system(mdl)

testObj = cvtest(mdl) %Create test spec object

testObj.settings.tableExec = 1; %Enable lookup table coverage

data = cvsim(testObj) %Simulate the model

12-154

tableinfo

blk_handle = get_param([mdl, '/Gain/Gain Table'], 'Handle');

cov = tableinfo(data, blk_handle) %Retrieve l/u table coverage

percent_cov = 100 * cov(1) / cov(2) %Percent MC/DC outcomes covered

Alternatives To collect lookup coverage for a model:

1 Open the model.

2 In the Model Editor, select Tools > Coverage Settings.

3 On the Coverage tab, under Coverage Metrics, select Look-up
Table Coverage.

4 On the Results and Report tabs, select the desired options.

5 Click OK to close the Coverage Settings dialog box.

6 Simulate the model and review the lookup table coverage in the
report.

See Also conditioninfo | cvsim | decisioninfo | mcdcinfo | sigrangeinfo

How To • “Lookup Table Coverage” on page 5-6

12-155

ModelAdvisor.ListViewParameter.Attributes property

Purpose Attributes to display in Model Advisor Report Explorer

Values Cell array

Default: {} (empty cell array)

Description The Attributes property specifies the attributes to display in the
center pane of the Model Advisor Results Explorer.

Example % define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

12-156

ModelAdvisor.Check.CallbackContext property

Purpose Model or subsystem context

Values 'PostCompile'
'None' (default)

Description The CallbackContext property specifies the context for checking the
model or subsystem.

'None' No special requirements for the model before
checking.

'Postcompile' The model must be compiled.

12-157

ModelAdvisor.Check.CallbackHandle property

Purpose Callback function handle for check

Values Function handle.

An empty handle [] is the default.

Description The CallbackHandle property specifies the handle to the check callback
function.

12-158

ModelAdvisor.Check.CallbackStyle property

Purpose Callback function type

Values 'StyleOne' (default)
'StyleTwo'
'StyleThree'

Description The CallbackStyle property specifies the type of the callback function.

'StyleOne' Simple check callback function

'StyleTwo' Detailed check callback function

'StyleThree' Check callback function with hyperlinked
results

12-159

ModelAdvisor.ListViewParameter.Data property

Purpose Objects in Model Advisor Result Explorer

Values Array of Simulink objects

Default: [] (empty array)

Description The Data property specifies the objects displayed in the Model Advisor
Result Explorer.

Example % define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

12-160

ModelAdvisor.Action.Description property

Purpose Message in Action box

Values String

Default:'' (null string)

Description The Description property specifies the message displayed in the
Action box.

Example % define action (fix) operation
myAction = ModelAdvisor.Action;
%Specify a callback function for the action
myAction.setCallbackFcn(@sampleActionCB);
myAction.Name='Fix block fonts';
myAction.Description=...

'Click the button to update all blocks with specified font';

12-161

ModelAdvisor.FactoryGroup.Description property

Purpose Description of folder

Values String

Default: '' (null string)

Description The Description property provides information about the folder.
Details about the folder are displayed in the right pane of the Model
Advisor.

Example % --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.Description='Demo Factory Group';

12-162

ModelAdvisor.Group.Description property

Purpose Description of folder

Values String

Default: '' (null string)

Description The Description property provides information about the folder.
Details about the folder are displayed in the right pane of the Model
Advisor.

Example MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');
MAG.Description='This is my group';

12-163

ModelAdvisor.InputParameter.Description property

Purpose Description of input parameter

Values String.

Default: '' (null string)

Description The Description property specifies a description of the input
parameter. Details about the check are displayed in the right pane of
the Model Advisor.

Example % define input parameters
inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';

12-164

ModelAdvisor.Task.Description property

Purpose Description of task

Values String

Default: '' (null string)

Description The Description property is a description of the task that the Model
Advisor displays in the Analysis box.

When adding checks as tasks, the Model Advisor uses the task
Description property instead of the check TitleTips property.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task 1';

MAT1.Description='This is the first example task.'

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT2.Description='This is the second example task.'

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

MAT3.Description='This is the third example task.'

12-165

ModelAdvisor.FactoryGroup.DisplayName property

Purpose Name of folder

Values String

Default:'' (null string)

Description The DisplayName specifies the name of the folder that is displayed in
the Model Advisor.

Examples % --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.DisplayName='Demo Factory Group';

12-166

ModelAdvisor.Group.DisplayName property

Purpose Name of folder

Values String

Default:'' (null string)

Description The DisplayName specifies the name of the folder that is displayed in
the Model Advisor.

Examples MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAG.DisplayName='My Group';

12-167

ModelAdvisor.Task.DisplayName property

Purpose Name of task

Values String

Default: '' (null string)

Description The DisplayName property specifies the name of the task. The Model
Advisor displays each custom task in the tree using the name of the
task. Therefore, you should specify a unique name for each task. When
you specify the same name for multiple tasks, the Model Advisor
generates a warning.

When adding checks as tasks, the Model Advisor uses the task
DisplayName property instead of the check Title property.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task with input parameter and auto-fix ability';

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

12-168

ModelAdvisor.Check.Enable property

Purpose Indicate whether user can enable or disable check

Values true (default)
false

Description The Enable property specifies whether the user can enable or disable
the check.

true Display the check box control

false Hide the check box control

12-169

ModelAdvisor.Task.Enable property

Purpose Indicate if user can enable and disable task

Values true (default)
false

Description The Enable property specifies whether the user can enable or disable
a task.

true (default) Display the check box control for task

false Hide the check box control for task

When adding checks as tasks, the Model Advisor uses the task Enable
property instead of the check Enable property.

Example MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.Enable ='false';

12-170

ModelAdvisor.InputParameter.Entries property

Purpose Drop-down list entries

Values Depends on the value of the Type property.

Description The Entries property is valid only when the Type property is one of
the following:

• Enum

• ComboBox

• PushButton

Examples inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';
inputParam3.Type='Combobox';
inputParam3.Description='sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};

12-171

ModelAdvisor.Check.ID property

Purpose Identifier for check

Values String

Default: '' (null string)

Description The ID property specifies a permanent, unique identifier for the check.
Note the following about the ID property:

• You must specify this property.

• The value of ID must remain constant.

• The Model Advisor generates an error if ID is not unique.

• Tasks and factory group definitions must refer to checks by ID.

12-172

ModelAdvisor.FactoryGroup.ID property

Purpose Identifier for folder

Values String

Description The ID property specifies a permanent, unique identifier for the folder.

Note

• You must specify this field.

• The value of ID must remain constant.

• The Model Advisor generates an error if ID is not unique.

• Group definitions must refer to other groups by ID.

12-173

ModelAdvisor.Group.ID property

Purpose Identifier for folder

Values String

Description The ID property specifies a permanent, unique identifier for the folder.

Note

• You must specify this field.

• The value of ID must remain constant.

• The Model Advisor generates an error if ID is not unique.

• Group definitions must refer to other groups by ID.

12-174

ModelAdvisor.Task.ID property

Purpose Identifier for task

Values String

Default: '' (null string)

Description The ID property specifies a permanent, unique identifier for the task.

Note

• The Model Advisor automatically assigns a string to ID if you do
not specify it.

• The value of ID must remain constant.

• The Model Advisor generates an error if ID is not unique.

• Group definitions must refer to tasks using ID.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.ID='Task_ID_1234';

12-175

ModelAdvisor.Check.LicenseName property

Purpose Product license names required to display and run check

Values Cell array of product license names

{}(empty cell array) (default)

Description The LicenseName property specifies a cell array of names for product
licenses required to display and run the check.

When the Model Advisor starts, it tests whether the product license
exists. If you do not meet the license requirements, the Model Advisor
does not display the check.

The Model Advisor performs a checkout of the product licenses when you
run the custom check. If you do not have the product licenses available,
you see an error message that the required license is not available.

Tip To find the correct text for license strings, type help license at
the MATLAB command line.

12-176

ModelAdvisor.Task.LicenseName property

Purpose Product license names required to display and run task

Values Cell array of product license names

Default: {} (empty cell array)

Description The LicenseName property specifies a cell array of names for product
licenses required to display and run the check.

When the Model Advisor starts, it tests whether the product license
exists. If you do not meet the license requirements, the Model Advisor
does not display the check.

The Model Advisor performs a checkout of the product licenses when you
run the custom check. If you do not have the product licenses available,
you see an error message that the required license is not available.

If you specify ModelAdvisor.Check.LicenseName, the Model Advisor
displays the check when the union of both properties is true.

Tip To find the correct text for license strings, type help license at
the MATLAB command line.

12-177

ModelAdvisor.Check.ListViewVisible property

Purpose Status of Explore Result button

Values false (default)
true

Description The ListViewVisible property is a Boolean value that sets the status
of the Explore Result button.

true Display the Explore Result button.

false Hide the Explore Result button.

Example % add 'Explore Result' button
rec.ListViewVisible = true;

12-178

ModelAdvisor.FactoryGroup.MAObj property

Purpose Model Advisor object

Values Handle to a Simulink.ModelAdvisor object

Description The MAObj property specifies a handle to the current Model Advisor
object.

12-179

ModelAdvisor.Group.MAObj property

Purpose Model Advisor object

Values Handle to Simulink.ModelAdvisor object

Description The MAObj property specifies a handle to the current Model Advisor
object.

12-180

ModelAdvisor.Task.MAObj property

Purpose Model Advisor object

Values Handle to a Simulink.ModelAdvisor object

Description The MAObj property specifies the current Model Advisor object.

When adding checks as tasks, the Model Advisor uses the task MAObj
property instead of the check MAObj property.

12-181

cv.cvdatagroup.name property

Purpose cv.cvdatagroup object name

Values name

Description The name property specifies the name of the cv.cvdatagroup object.

Examples cvdg = cvsimref(topModelName, cvtg);
cvdg.name = 'My_Data_Group';

12-182

cv.cvtestgroup.name property

Purpose cv.cvtestgroup object name

Value name

Description The name property specifies the name of the cv.cvtestgroup object.

Examples cvto1 = cvtest('TopModel');
cvto2 = cvtest('SubModel1');
cvto3 = cvtest('SubModel2');
cvtg = cv.cvtestgroup(cvto1, cvto2, cvto3);
cvtg.name = 'My_Test_Group';

See Also cvtest

12-183

ModelAdvisor.Action.Name property

Purpose Action button label

Values String

Default: '' (null string)

Description The Name property specifies the label for the action button. This
property is required.

Example % define action (fix) operation
myAction = ModelAdvisor.Action;
%Specify a callback function for the action
myAction.setCallbackFcn(@sampleActionCB);
myAction.Name='Fix block fonts';

12-184

ModelAdvisor.InputParameter.Name property

Purpose Input parameter name

Values String.

Default: '' (null string)

Description The Name property specifies the name of the input parameter in the
custom check.

Examples inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';

12-185

ModelAdvisor.ListViewParameter.Name property

Purpose Drop-down list entry

Values String

Default: '' (null string)

Description The Name property specifies an entry in the Show drop-down list in the
Model Advisor Result Explorer.

Examples % define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

12-186

ModelAdvisor.Check.Result property

Purpose Results cell array

Values Cell array

Default: {} (empty cell array)

Description The Result property specifies the cell array for storing the results that
are returned by the callback function specified in CallbackHandle.

Tip To set the icon associated with the check, use the
Simulink.ModelAdvisor setCheckResultStatus and
setCheckErrorSeverity methods.

12-187

ModelAdvisor.Check.Title property

Purpose Name of check

Values String

Default: '' (null string)

Description The Title property specifies the name of the check in the Model
Advisor. The Model Advisor displays each custom check in the tree
using the title of the check. Therefore, you should specify a unique title
for each check. When you specify the same title for multiple checks, the
Model Advisor generates a warning.

Example rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.Title = 'Check Simulink block font';

12-188

ModelAdvisor.Check.TitleTips property

Purpose Description of check

Values String

Default: '' (null string)

Description The TitleTips property specifies a description of the check. Details
about the check are displayed in the right pane of the Model Advisor.

Example rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.Title = 'Check Simulink block font';
rec.TitleTips = 'Example style three callback';

12-189

ModelAdvisor.InputParameter.Type property

Purpose Input parameter type

Values String.

Default: '' (null string)

Description The Type property specifies the type of input parameter.

Use the Type property with the Value and Entries properties to define
input parameters.

Valid values are listed in the following table.

Type Data
Type

Default
Value

Description

Bool Boolean false A check box

ComboBox Cell
array

First entry in
the list

A drop-down menu
• Use Entries to define the
entries in the list.

• Use Value to indicate a
specific entry in the menu
or to enter a value not in
the list.

Enum Cell
array

First entry in
the list

A drop-down menu
• Use Entries to define the
entries in the list.

• Use Value to indicate a
specific entry in the list.

12-190

ModelAdvisor.InputParameter.Type property

Type Data
Type

Default
Value

Description

PushButton N/A N/A A button

When you click the button,
the callback function
specified by Entries is
called.

String String '' (null
string)

A text box

Examples % define input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;

12-191

ModelAdvisor.Check.Value property

Purpose Status of check

Values 'true' (default)
'false'

Description The Value property specifies the initial status of the check.

'true' Check is enabled

'false' Check is disabled

Examples % hide all checks that do not belong to Demo group
if ~(strcmp(checkCellArray{i}.Group, 'Demo'))

checkCellArray{i}.Visible = false;
checkCellArray{i}.Value = false;

end

12-192

ModelAdvisor.InputParameter.Value property

Purpose Value of input parameter

Values Depends on the Type property.

Description The Value property specifies the initial value of the input parameter.
This property is valid only when the Type property is one of the
following:

• 'Bool'

• 'String'

• 'Enum'

• 'ComboBox'

Example % define input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;

12-193

ModelAdvisor.Task.Value property

Purpose Status of task

Values 'true' (default) — Initial status of task is enabled
'false' — Initial status of task is disabled

Description The Value property indicates the initial status of a task—whether it is
enabled or disabled.

When adding checks as tasks, the Model Advisor uses the task Value
property instead of the check Value property.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.Value ='false';

12-194

ModelAdvisor.Check.Visible property

Purpose Indicate to display or hide check

Values 'true' (default)
'false'

Description The Visible property specifies whether the Model Advisor displays
the check.

'true' Display the check

'false' Hide the check

Examples % hide all checks that do not belong to Demo group
if ~(strcmp(checkCellArray{i}.Group, 'Demo'))

checkCellArray{i}.Visible = false;
checkCellArray{i}.Value = false;

end

12-195

ModelAdvisor.Task.Visible property

Purpose Indicate to display or hide task

Values 'true' (default) — Display task in the Model Advisor
'false' — Hide task

Description The Visible property specifies whether the Model Advisor displays
the task.

Caution

When adding checks as tasks, you cannot specify both the task and
check Visible properties, you must specify one or the other. If you
specify both properties, the Model Advisor generates an error when the
check Visible property is false.

Example MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.Visible ='false';

12-196

13

Block Reference

System Requirements

Purpose List system requirements in Simulink diagrams

Library Simulink Verification and Validation

Description The System Requirements block lists all the system requirements
associated with the model or subsystem depicted in the current
diagram. It does not list requirements associated with individual blocks
in the diagram.

You can place this block anywhere in a diagram. It is not connected to
other Simulink blocks. You can only have one System Requirements
block in a diagram.

When you drag the System Requirements block from the Library
Browser into your Simulink diagram, it is automatically populated with
the system requirements, as shown.

Each of the listed requirements is an active link to the actual
requirements document. When you double-click on a requirement name,
the associated requirements document opens in its editor window,
scrolled to the target location.

13-2

System Requirements

If the System Requirements block exists in a diagram, it automatically
updates the requirements listing as you add, modify, or delete
requirements for the model or subsystem.

For more information on using the System Requirements block, see
“Using the System Requirements Block in a Model” on page 2-56.

Dialog
Box and
Parameters

To access the Block Parameters dialog box for the System Requirements
block, right-click on the System Requirements block and, from
the resulting pop-up menu, select Mask Parameters. The Block
Parameters dialog box opens, as shown.

The Block Parameters dialog box for the System Requirements block
contains one parameter.

Block Title
The title of the system requirements list in the diagram. The
default title is System Requirements. You can type a customized
title, for example, Engine Requirements.

13-3

System Requirements

13-4

14

Model Advisor Checks

• “Simulink® Verification and Validation Checks” on page 14-2

• “DO-178B Checks” on page 14-4

• “IEC 61508 Checks” on page 14-62

• “MathWorks Automotive Advisory Board Checks” on page 14-79

• “Requirements Consistency Checks” on page 14-145

14 Model Advisor Checks

Simulink Verification and Validation Checks

In this section...

“Simulink® Verification and Validation Checks Overview” on page 14-2

“Modeling Standards Checks Overview” on page 14-3

Simulink Verification and Validation Checks
Overview
Simulink Verification and Validation checks facilitate designing and
troubleshooting models from which code is generated for applications that
must meet safety or mission-critical requirements, modeling guidelines, or
requirements consistency.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the Simulink Verification and Validation
checks.

For descriptions of the modeling standards checks, see

• “DO-178B Checks” on page 14-4

• “IEC 61508 Checks” on page 14-62

• “MathWorks Automotive Advisory Board Checks” on page 14-79

For descriptions of the requirements consistency checks, see “Requirements
Consistency Checks” on page 14-145.

See Also

• “Consulting the Model Advisor” in the Simulink documentation

• “Simulink Checks” in the Simulink reference documentation

• “Real-Time Workshop Checks” in the Real-Time Workshop documentation

14-2

Simulink® Verification and Validation™ Checks

Modeling Standards Checks Overview
Modeling standards checks facilitate designing and troubleshooting models
from which code is generated for applications that must meet safety or
mission-critical requirements or MathWorks Automotive Advisory Board
(MAAB) modeling guidelines.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the modeling standards checks.

For descriptions of the modeling standards checks, see

• “DO-178B Checks” on page 14-4

• “IEC 61508 Checks” on page 14-62

• “MathWorks Automotive Advisory Board Checks” on page 14-79

See Also

• Consulting the Model Advisor in the Simulink documentation

• Simulink Checks in the Simulink reference documentation

• Real-Time Workshop Checks in the Real-Time Workshop documentation

14-3

14 Model Advisor Checks

DO-178B Checks

In this section...

“DO-178B Checks Overview” on page 14-5

“Check safety-related optimization settings” on page 14-6

“Check safety-related diagnostic settings for solvers” on page 14-10

“Check safety-related diagnostic settings for sample time” on page 14-13

“Check safety-related diagnostic settings for signal data” on page 14-16

“Check safety-related diagnostic settings for parameters” on page 14-19

“Check safety-related diagnostic settings for data used for debugging” on
page 14-22

“Check safety-related diagnostic settings for data store memory” on page
14-24

“Check safety-related diagnostic settings for type conversions” on page 14-26

“Check safety-related diagnostic settings for signal connectivity” on page
14-28

“Check safety-related diagnostic settings for bus connectivity” on page 14-30

“Check safety-related diagnostic settings that apply to function-call
connectivity” on page 14-32

“Check safety-related diagnostic settings for compatibility” on page 14-34

“Check safety-related diagnostic settings for model initialization” on page
14-36

“Check safety-related diagnostic settings for model referencing” on page
14-38

“Check safety-related model referencing settings” on page 14-41

“Check safety-related code generation settings” on page 14-43

“Check safety-related diagnostic settings for saving” on page 14-50

“Check for model objects that do not link to requirements” on page 14-52

“Check for proper usage of Math blocks” on page 14-53

“Check for proper usage of For Iterator blocks” on page 14-54

14-4

DO-178B Checks

In this section...

“Check for proper usage of While Iterator blocks” on page 14-55

“Display model version information” on page 14-57

“Check for proper usage of blocks that compute absolute values” on page
14-58

“Check for proper usage of Relational Operator blocks” on page 14-60

DO-178B Checks Overview
DO-178B checks facilitate designing and troubleshooting models from which
code is generated for applications that must meet safety or mission-critical
requirements.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the DO-178B checks.

See Also

• “Consulting the Model Advisor” in the Simulink documentation

• “Simulink Checks” in the Simulink reference documentation

• “Real-Time Workshop Checks” in the Real-Time Workshop documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-5

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related optimization settings
Check model configuration for optimization settings that can impact safety.

Description
This check verifies that model optimization configuration parameters are set
optimally for generating code for a safety-related application. Although highly
optimized code is desirable for most real-time systems, some optimizations
can have undesirable side effects that impact safety.

Results and Recommended Actions

Condition Recommended Action

Block reduction optimization is selected.
This optimization can remove blocks from
generated code, resulting in requirements
with no associated code and violations for
traceability requirements. (See DO-178B,
Section 6.3.4e—Source code is traceable to
low-level requirements.)

Clear the Block reduction check box on
the Optimization pane of the Configuration
Parameters dialog box or set the parameter
BlockReduction to off.

Implementation of logic signals as Boolean
data is cleared. Strong data typing is
recommended for safety-related code.
(See DO-178B, Section 6.3.1e—High-level
requirements conform to standards,
DO-178B, Section 6.3.2e—Low-level
requirements conform to standards, and
MISRA C® 2004, Rule 12.6.)

Select Implement logic signals as boolean
data (vs. double) on the Optimization pane of
the Configuration Parameters dialog box or set
the parameter BooleanDataType to on.

14-6

DO-178B Checks

Condition Recommended Action

The model includes blocks that depend on
elapsed or absolute time and is configured to
minimize the amount of memory allocated
for the timers. Such a configuration limits
the number of days the application can
execute before a timer overflow occurs.
Many aerospace products are powered on
continuously and timers should not assume
a limited lifespan. (See DO-178B, Section
6.3.1g—Algorithms are accurate, DO-178B,
Section 6.3.2g—Algorithms are accurate,
and MISRA C 2004, Rule 12.11.)

Set Application lifespan (days) on the
Optimization pane of the Configuration
Parameters dialog box or set the parameter
LifeSpan to inf.

The optimization that ignores integer
downcasts in folded expressions is selected.
This optimization can remove blocks that
typecast data from generated code, resulting
in incorrect behavior due to overflows of
integer data and requirements without
associated code. (See DO-178B, Section
6.3.1g—Algorithms are accurate, DO-178B,
Section 6.3.2g—Algorithms are accurate,
and MISRA C 2004, Rule 10.1.)

If you have a Real-Time Workshop license, clear
the “Ignore integer downcasts in folded
expressions” check box on the Optimization
pane of the Configuration Parameters dialog box
or set the parameter EnforceIntegerDowncast
to on.

The optimization that suppresses the
generation of initialization code for
root-level inports and outports that are set
to zero is selected. For safety-related code,
you should explicitly initialize all variables.
(See DO-178B, Section 6.3.3b—Software
architecture is consistent and MISRA C
2004, Rule 9.1.)

If you have a Real-Time Workshop Embedded
Coder license, and you are using an ERT-based
system target file, clear the Remove root
level I/O zero initialization check box on
the Optimization pane of the Configuration
Parameters dialog box or set the parameter
ZeroExternalMemoryAtStartup to on.
Alternatively, integrate external, hand-written
code that initializes all I/O variables to zero
explicitly.

14-7

14 Model Advisor Checks

Condition Recommended Action

The optimization that suppresses the
generation of initialization code for internal
work structures, such as block states and
block outputs that are set to zero, is selected.
For safety-related code, you should explicitly
initialize all variables. (See DO-178B,
Section 6.3.3b—Software architecture is
consistent and MISRA C 2004, Rule 9.1.)

If you have a Real-Time Workshop Embedded
Coder license, and you are using an ERT-based
system target file, clear the Remove internal
data zero initialization check box on the
Optimization pane of the Configuration
Parameters dialog box or set the parameter
ZeroInternalMemoryAtStartup to on.
Alternatively, integrate external, hand-written
code that initializes all state variables to zero
explicitly.

The optimization that suppresses generation
of code resulting from floating-point to
integer conversions that wrap out-of-range
values is cleared. You must avoid
overflows for safety-related code. When
this optimization is off and your model
includes blocks that disable the Saturate
on overflow parameter, the code generator
wraps out-of-range values for those blocks.
This can result in unreachable and,
therefore, untestable code. (See DO-178B,
Section 6.3.1g—Algorithms are accurate,
DO-178B, Section 6.3.2g—Algorithms are
accurate, and MISRA C 2004, Rule 12.11.)

If you have a Real-Time Workshop license, select
Remove code from floating-point to integer
conversions that wraps out-of-range values
on the Optimization pane of the Configuration
Parameters dialog box or set the parameter
EfficientFloat2IntCast to on.

The optimization that suppresses generation
of code that guards against division by
zero for fixed-point data is selected. You
must avoid division-by-zero exceptions in
safety-related code. (See DO-178B, Section
6.3.1g—Algorithms are accurate, DO-178B,
Section 6.3.2g—Algorithms are accurate,
and MISRA C 2004, Rule 21.1.)

If you have a Real-Time Workshop Embedded
Coder license, and you are using an ERT-based
system target file, clear the Remove code
that protects against division arithmetic
exceptions check box on the Optimization pane
of the Configuration Parameters dialog box or set
the parameter NoFixptDivByZeroProtection to
off.

Action Results
Clicking Modify Settings configures model optimization settings that can
impact safety.

14-8

DO-178B Checks

See Also

• Optimization Pane in the Simulink graphical user interface documentation

• Optimizing a Model for Code Generation in the Real-Time Workshop
documentation

• Tips for Optimizing the Generated Code in the Real-Time Workshop
Embedded Coder documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-9

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for solvers
Check model configuration for diagnostic settings that apply to solvers and
that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to solvers are set optimally for generating code for a safety-related application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic for detecting automatic
breakage of algebraic loops is set to none
or warning. The breaking of algebraic
loops can affect the predictability of the
order of block execution. For safety-related
applications, a model developer needs
to know when such breaks occur. (See
DO-178B, Section 6.3.3e – Software
architecture conforms to standards.)

Set Algebraic loop on theDiagnostics > Solver
pane of the Configuration Parameters dialog box
or set the parameter AlgebraicLoopMsg to error.
Consider breaking such loops explicitly with Unit
Delay blocks to ensure that execution order is
predictable. At a minimum, verify that the results
of loops breaking automatically are acceptable.

The diagnostic for detecting automatic
breakage of algebraic loops for Model
blocks, atomic subsystems, and enabled
subsystems is set to none or warning.
The breaking of algebraic loops can affect
the predictability of the order of block
execution. For safety-related applications,
a model developer needs to know when
such breaks occur. (See DO-178B, Section
6.3.3e – Software architecture conforms to
standards.)

Set Minimize algebraic loop on the
Diagnostics > Solver pane of the Configuration
Parameters dialog box or set the parameter
ArtificialAlgebraicLoopMsg to error.
Consider breaking such loops explicitly with Unit
Delay blocks to ensure that execution order is
predictable. At a minimum, verify that the results
of loops breaking automatically are acceptable.

14-10

DO-178B Checks

Condition Recommended Action

The diagnostic for detecting potential
conflict in block execution order is set
to none or warning. For safety-related
applications, block execution order must
be predictable. A model developer needs to
know when conflicting block priorities exist.
(See DO-178B, Section 6.3.3b – Software
architecture is consistent.)

Set Block priority violation on the
Diagnostics > Solver pane of the Configuration
Parameters dialog box or set the parameter
BlockPriorityViolationMsg to error.

The diagnostic for detecting whether a model
contains an S-function that has not been
specified explicitly to inherit sample time
is set to none or warning. These settings
can result in unpredictable behavior. A
model developer needs to know when such
an S-function exists in a model so it can be
modified to produce predictable behavior.
(See DO-178B, Section 6.3.3e – Software
architecture conforms to standards.)

Set Unspecified inheritability of sample
times on the Diagnostics > Solver pane of the
Configuration Parameters dialog box or set the
parameter UnknownTslnhSupMsg to error.

The diagnostic for detecting whether the
Simulink software automatically modifies
the solver, step size, or simulation stop time
is set to none or warning. Such changes
can affect the operation of generated
code. For safety-related applications, it is
better to detect such changes so a model
developer can explicitly set the parameters
to known values. (See DO-178B, Section
6.3.3e – Software architecture conforms to
standards.)

Set Automatic solver parameter selection
on the Diagnostics > Solver pane of the
Configuration Parameters dialog box or set the
parameter SolverPrmCheckMsg to error.

The diagnostic for detecting when a name
is used for more than one state in the
model is set to none. State names within a
model should be unique. For safety-related
applications, it is better to detect name
clashes so a model developer can correct
them. (See DO-178B, Section 6.3.3b –
Software architecture is consistent.)

Set State name clash on the
Diagnostics > Solver pane of the Configuration
Parameters dialog box or set the parameter
StateNameClashWarn to warning.

14-11

14 Model Advisor Checks

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
solvers and that can impact safety.

See Also

• Diagnostics Pane: Solver in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-12

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check safety-related diagnostic settings for sample
time
Check model configuration for diagnostic settings that apply to sample time
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to sample times are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic for detecting when a source
block, such as a Sine Wave block, inherits
a sample time (specified as -1) is set to
none or warning. The use of inherited
sample times for a source block can result
in unpredictable execution rates for the
source block and blocks connected to it.
For safety-related applications, source
blocks should have explicit sample times
to prevent incorrect execution sequencing.
(See DO-178B, Section 6.3.3e – Software
architecture conforms to standards.)

Set Source block specifies -1 sample time on
the Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter InheritedTslnSrcMsg to error.

The diagnostic for detecting whether the
input for a discrete block, such as the
Unit Delay block, is a continuous signal
is set to none or warning. Signals with
continuous sample times should not be used
for embedded real-time code. (See DO-178B,
Section 6.3.3e – Software architecture
conforms to standards.)

Set Discrete used as continuous on the
Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter DiscreteInheritContinuousMsg to
error.

14-13

14 Model Advisor Checks

Condition Recommended Action

The diagnostic for detecting invalid rate
transitions between two blocks operating in
multitasking mode is set to none or warning.
Such rate transitions should not be used for
embedded real-time code. (See DO-178B,
Section 6.3.3b – Software architecture is
consistent.)

Set Multitask rate transition on the
Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter MultiTaskRateTransMsg to error.

The diagnostic for detecting subsystems
that can cause data corruption or
nondeterministic behavior is set to none
or warning. This diagnostic detects
whether conditionally executed multirate
subsystems (enabled, triggered, or
function-call subsystems) operate in
multitasking mode. Such subsystems can
corrupt data and behave unpredictably
in real-time environments that allow
preemption. (See DO-178B, Section 6.3.3b –
Software architecture is consistent.)

Set Multitask conditionally executed
subsystem on the Diagnostics > Sample Time
pane of the Configuration Parameters dialog box
or set the parameter MultiTaskCondExecSysMsg
to error.

The diagnostic for checking sample time
consistency between a Signal Specification
block and the connected destination block is
set to none or warning. An over-specified
sample time can result in an unpredictable
execution rate. (See DO-178B, Section
6.3.3e – Software architecture conforms to
standards.)

Set Enforce sample times specified
by Signal Specification blocks on the
Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter SigSpecEnsureSampleTimeMsg to
error.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
sample time and that can impact safety.

14-14

DO-178B Checks

See Also

• Diagnostics Pane: Sample Time in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-15

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for signal
data
Check model configuration for diagnostic settings that apply to signal data
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to signal data are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that specifies how the
Simulink software resolves signals
associated with Simulink.Signal objects in
the MATLAB workspace is set to Explicit
and implicit or Explicit and warn
implicit. For safety-related applications,
model developers should be required to
define signal resolution explicitly. (See
DO-178B, Section 6.3.3b – Software
architecture is consistent.)

Set Signal resolution on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set
the parameter SignalResolutionControl to
Explicit only. This provides predictable
operation by requiring users to define each
signal and block setting that must resolve to
Simulink.Signal objects in the workspace.

The Product block diagnostic that detects a
singular matrix while inverting one of its
inputs in matrix multiplication mode is set
to none or warning. Division by a singular
matrix can result in numeric exceptions
when executing generated code. This is
not acceptable in safety-related systems.
(See DO-178B, Section 6.3.1g – Algorithms
are accurate, DO-178B, Section 6.3.2g –
Algorithms are accurate, and MISRA C
2004, Rule 21.1.)

Set Division by singular matrix on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter CheckMatrixSingularityMsg to
error.

14-16

DO-178B Checks

Condition Recommended Action

The diagnostic that detects when the
Simulink software cannot infer the data
type of a signal during data type propagation
is set to none or warning. For safety-related
applications, model developers must ensure
that all data types are specified correctly.
(See DO-178B, Section 6.3.1e – High-level
requirements conform to standards,
DO-178B and Section 6.3.2e – Low-level
requirements conform to standards.)

Set Underspecified data types on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter UnderSpecifiedDataTypeMsg to
error.

The diagnostic that detects whether the
value of a signal or parameter is too
large to be represented by the signal or
parameter’s data type is set to none or
warning. Undetected numeric overflows can
result in unexpected application behavior.
(See DO-178B, Section 6.3.1g – Algorithms
are accurate, DO-178B, Section 6.3.2g –
Algorithms are accurate, and MISRA C
2004, Rule 21.1.)

Set Detect overflow on the Diagnostics > Data
Validity pane of the Configuration
Parameters dialog box or set the parameter
IntegerOverflowMsg to error.

The diagnostic that detects when the value
of a block output signal is Inf or NaN at
the current time step is set to none or
warning. When this type of block output
signal condition occurs, numeric exceptions
can result, and numeric exceptions are not
acceptable in safety-related applications.
(See DO-178B, Section 6.3.1g – Algorithms
are accurate, DO-178B, Section 6.3.2g –
Algorithms are accurate, and MISRA C
2004, Rule 21.1.)

Set Inf or NaN block output on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter SignalInfNanChecking to error.

14-17

14 Model Advisor Checks

Condition Recommended Action

The diagnostic that detects Simulink object
names that begin with rt is set to none or
warning. This diagnostic prevents name
clashes with generated signal names that
have an rt prefix. (See DO-178B, Section
6.3.1e – High-level requirements conform
to standards, and DO-178B, Section 6.3.2e
– Low-level requirements conform to
standards.)

Set "rt" prefix for identifiers on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter RTPrefix to error.

The diagnostic that detects simulation
range checking is set to none or warning.
This diagnostic detects when signals exceed
their specified ranges during simulation.
Simulink compares the signal values that a
block outputs with the specified range and
the block data type. (See DO-178B, Section
6.3.1g – Algorithms are accurate, DO-178B,
Section 6.3.2g – Algorithms are accurate,
and MISRA C 2004, Rule 21.1.)

Set Simulation range checking on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter SignalRangeChecking to error.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
signal data and that can impact safety.

See Also

• Diagnostics Pane: Data Validity in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-18

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check safety-related diagnostic settings for
parameters
Check model configuration for diagnostic settings that apply to parameters
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to parameters are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects when a
parameter downcast occurs is set to none
or warning. A downcast to a lower signal
range can result in numeric overflows
of parameters, resulting in unexpected
behavior. (See DO-178B, Section 6.3.1g –
Algorithms are accurate, DO-178B, Section
6.3.2g – Algorithms are accurate, and
MISRA C 2004, Rule 21.1.)

Set Detect downcast on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ParameterDowncastMsg to error.

The diagnostic that detects when a
parameter underflow occurs is set to none or
warning. When the data type of a parameter
does not have sufficient resolution, the
parameter value is zero instead of the
specified value. This can lead to incorrect
operation of generated code. (See DO-178B,
Section 6.3.1g – Algorithms are accurate,
DO-178B, Section 6.3.2g – Algorithms are
accurate, and MISRA C 2004, Rule 21.1.)

Set Detect underflow on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ParameterUnderflowMsg to error.

14-19

14 Model Advisor Checks

Condition Recommended Action

The diagnostic that detects when a
parameter overflow occurs is set to none or
warning. Numeric overflows can result in
unexpected application behavior and should
be detected and corrected in safety-related
applications. (See DO-178B, Section 6.3.1g –
Algorithms are accurate, DO-178B, Section
6.3.2g – Algorithms are accurate, and
MISRA C 2004, Rule 21.1.)

SetDetect overflow on theDiagnostics > Data
Validity pane of the Configuration
Parameters dialog box or set the parameter
ParameterOverflowMsg to error.

The diagnostic that detects when a
parameter loses precision is set to none
or warning. Not detecting such errors
can result in a parameter being set to
an incorrect value in the generated code.
(See DO-178B, Section 6.3.1g – Algorithms
are accurate, DO-178B, Section 6.3.2g –
Algorithms are accurate, and MISRA C
2004, Rules 10.1, 10.2, 10.3, and 10.4.)

Set Detect precision loss on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set
the parameter ParameterPrecisionLossMsg to
error.

The diagnostic that detects when an
expression with tunable variables is reduced
to its numerical equivalent is set to none
or warning. This can result in a tunable
parameter unexpectedly not being tunable
in generated code. (See DO-178B, Section
6.3.1g – Algorithms are accurate and
DO-178B, Section 6.3.2g – Algorithms are
accurate.)

Set Detect loss of tunability on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ParameterTunabilityLossMsg to
error.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
parameters and that can impact safety.

See Also

• Diagnostics Pane: Data Validity in the Simulink graphical user interface
documentation

14-20

DO-178B Checks

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-21

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for data
used for debugging
Check model configuration for diagnostic settings that apply to data used for
debugging and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to debugging are set optimally for generating code for a safety-related
application.

See

• DO-178B, Section 6.3.1e – High-level requirements conform to standards

• DO-178B and Section 6.3.2e – Low-level requirements conform to standards

Results and Recommended Actions

Condition Recommended Action

The diagnostic that enables model
verification blocks is set to Use local
settings or Enable all. Such blocks
should be disabled because they are
assertion blocks, which are for verification
only. Model developers should not use
assertions in embedded code.

Set Model Verification block enabling on
the Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter AssertControl to Disable All.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
data used for debugging and that can impact safety.

See Also

• Diagnostics Pane: Data Validity in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

14-22

DO-178B Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-23

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for data
store memory
Check model configuration for diagnostic settings that apply to data store
memory and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to data store memory are set optimally for generating code for a safety-related
application.

See DO-178B, Section 6.3.3b – Software architecture is consistent.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether the
model attempts to read data from a data
store in which it has not stored data in the
current time step is set to a value other
than Enable all as errors. Reading data
before it is written can result in use of stale
data or data that is not initialized.

Set Detect read before write on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ReadBeforeWriteMsg to Enable all
as errors.

The diagnostic that detects whether the
model attempts to store data in a data store,
after previously reading data from it in the
current time step, is set to a value other
than Enable all as errors. Writing data
after it is read can result in use of stale or
incorrect data.

Set Detect write after read on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter WriteAfterReadMsg to Enable all
as errors.

14-24

DO-178B Checks

Condition Recommended Action

The diagnostic that detects whether the
model attempts to store data in a data store
twice in succession in the current time step
is set to a value other than Enable all as
errors. Writing data twice in one time step
can result in unpredictable data.

Set Detect write after write on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter WriteAfterWriteMsg to Enable all
as errors.

The diagnostic that detects when one task
reads data from a Data Store Memory block
to which another task writes data is set to
none or warning. Reading or writing data in
different tasks in multitask mode can result
in corrupted or unpredictable data.

Set Multitask data store on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter MultiTaskDSMMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to data store memory and that can impact safety.

See Also

• Diagnostics Pane: Data Validity in the Simulink graphical user interface
documentation

• Diagnosing Simulation Errors in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-25

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for type
conversions
Check model configuration for diagnostic settings that apply to type
conversions and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to type conversions are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects Data Type
Conversion blocks used where no type
conversion is necessary is set to none.
The Simulink software might remove
unnecessary Data Type Conversion blocks
from generated code. This might result
in requirements without corresponding
code. The removal of such blocks need to be
detected so model developers can remove
the unnecessary blocks explicitly. (See
DO-178B, Section 6.3.1g – Algorithms are
accurate and DO-178B, Section 6.3.2g –
Algorithms are accurate.)

Set Unnecessary type conversions on the
Diagnostics > Type Conversion pane of the
Configuration Parameters dialog box or set the
parameter UnnecessaryDatatypeConvMsg to
warning.

14-26

DO-178B Checks

Condition Recommended Action

The diagnostic that detects vector-to-matrix
or matrix-to-vector conversions at block
inputs is set to none or warning. When the
Simulink software automatically converts
between vector and matrix dimensions,
unintended operations or unpredictable
behavior can occur. (See DO-178B, Section
6.3.1g – Algorithms are accurate and
DO-178B, Section 6.3.2g – Algorithms are
accurate.)

Set Vector/matrix block input conversion on
the Diagnostics > Type Conversion pane of
the Configuration Parameters dialog box or set
the parameter VectorMatrixConversionMsg to
error.

The diagnostic that detects when a 32-bit
integer value is converted to a floating-point
value is set to none. This type of conversion
can result in a loss of precision due to
truncation of the least significant bits
for large integer values. (See DO-178B,
Section 6.3.1g – Algorithms are accurate and
DO-178B, Section 6.3.2g – Algorithms are
accurate, and MISRA C 2004, Rules 10.1,
10.2, 10.3, and 10.4.)

Set 32-bit integer to single precision float
conversion on the Diagnostics > Type
Conversion pane of the Configuration
Parameters dialog box or set the parameter
Int32ToFloatConvMsg to warning.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
type conversions and that can impact safety.

See Also

• Diagnostics Pane: Type Conversion in the Simulink graphical user
interface documentation

• Data Type Conversion block in the Simulink reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-27

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for signal
connectivity
Check model configuration for diagnostic settings that apply to signal
connectivity and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to signal connectivity are set optimally for generating code for a safety-related
application.

See

• DO-178B, Section 6.3.1e – High-level requirements conform to standards

• DO-178B, Section 6.3.2e – Low-level requirements conform to standards

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects virtual signals
that have a common source signal but
different labels is set to none or warning.
This diagnostic pertains to virtual signals
only and has no effect on generated code.
However, signal label mismatches can lead
to confusion during model reviews.

Set Signal label mismatch on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter SignalLabelMismatchMsg to error.

The diagnostic that detects when the model
contains a block with an unconnected input
signal is set to none or warning. This must
be detected because code is not generated for
unconnected block inputs.

Set Unconnected block input ports on
the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter UnconnectedInputMsg to error.

14-28

DO-178B Checks

Condition Recommended Action

The diagnostic that detects when the model
contains a block with an unconnected output
signal is set to none or warning. This must
be detected because dead code can result
from unconnected block output signals.

Set Unconnected block output ports on
the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter UnconnectedOutputMsg to error.

The diagnostic that detects unconnected
signal lines and unmatched Goto or From
blocks is set to none or warning. This
error must be detected because code is not
generated for unconnected lines.

Set Unconnected line on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter UnconnectedLineMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to signal connectivity and that can impact safety.

See Also

• Diagnostics Pane: Connectivity in the Simulink graphical user interface
documentation

• Signal Basics in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-29

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for bus
connectivity
Check model configuration for diagnostic settings that apply to bus
connectivity and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to bus connectivity are set optimally for generating code for a safety-related
application.

See DO-178B, Section 6.3.3b – Software architecture is consistent.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether a Model
block’s root Outport block is connected to a
bus but does not specify a bus object is set to
none or warning. For a bus signal to cross a
model boundary, the signal must be defined
as a bus object to ensure compatibility with
higher level models that use a model as a
reference model.

Set Unspecified bus object at root Outport
block on the Diagnostics > Connectivity pane
of the Configuration Parameters dialog box or set
the parameter RootOutportRequireBusObject
to error.

The diagnostic that detects whether the
name of a bus element matches the name
specified by the corresponding bus object
is set to none or warning. This diagnostic
prevents the use of incompatible buses in
a bus-capable block such that the output
names are inconsistent.

Set Element name mismatch on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter BusObjectLabelMismatch to error.

The diagnostic that detects when some
blocks treat a signal as a mux/vector,
while other blocks treat the signal as a
bus, is set to none or warning. When the
Simulink software automatically converts
a muxed signal to a bus, it is possible for

• Set Mux blocks used to create bus signals
on the Diagnostics > Connectivity pane of
the Configuration Parameters dialog box to
error, or set the parameter StrictBusMsg to
ErrorOnBusTreatedAsVector.

14-30

DO-178B Checks

Condition Recommended Action

an unintended operation or unpredictable
behavior to occur. • Set “Bus signal treated as vector” on the

Diagnostics > Connectivity pane of the
Configuration Parameters dialog box to
error, or the parameter StrictBusMsg to
ErrorOnBusTreatedAsVector.

You can use the Model Advisor or the
sl_replace_mux utility function to replace all
Mux blocks used as bus creators with a Bus
Creator block.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
bus connectivity and that can impact safety.

See Also

• Diagnostics Pane: Connectivity in the Simulink graphical user interface
documentation

• Simulink.Bus in the Simulink reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-31

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings that apply
to function-call connectivity
Check model configuration for diagnostic settings that apply to function-call
connectivity and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to function-call connectivity are set optimally for generating code for a
safety-related application.

DO-178B, Section 6.3.3b – Software architecture is consistent

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects incorrect use
of a function-call subsystem is set to none
or warning. If this condition is undetected,
incorrect code might be generated.

Set Invalid function-call connection on
the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter InvalidFcnCallConMsg to error.

The diagnostic that specifies whether the
Simulink software has to compute inputs
of a function-call subsystem directly or
indirectly while executing the subsystem is
set to Use local settings or Disable all.
This diagnostic detects unpredictable data
coupling between a function-call subsystem
and the inputs of the subsystem in the
generated code.

Set Context-dependent inputs on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter FcnCallInpInsideContextMsg to
Enable all.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
function-call connectivity and that can impact safety.

14-32

DO-178B Checks

See Also

• Diagnostics Pane: Connectivity in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-33

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for
compatibility
Check model configuration for diagnostic settings that affect compatibility
and that might impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to compatibility are set optimally for generating code for a safety-related
application.

See DO-178B, Section 6.3.3b – Software architecture is consistent and MISRA
C 2004, Rule 9.1.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects when a block
has not been upgraded to use features of the
current release is set to none or warning.
An S-function written for an earlier version
might not be compatible with the current
version and generated code could operate
incorrectly.

Set S-function upgrades needed on the
Diagnostics > Compatibility pane of the
Configuration Parameters dialog box or set the
parameter SFcnCompatibilityMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that affect
compatibility and that might impact safety.

See Also

• Diagnosing Simulation Errors in the Simulink documentation

• Diagnostics Pane: Compatibility in the Simulink graphical user interface
documentation

14-34

DO-178B Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-35

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for model
initialization
In the model configuration, check diagnostic settings that affect model
initialization and might impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to initialization are set optimally for generating code for a safety-related
application.

See DO-178B, Section 6.3.3b – Software architecture is consistent and MISRA
C 2004, Rule 9.1.

Analysis Results and Recommended Actions

Condition Recommended Action

The Check undefined subsystem initial
output diagnostic is cleared. This diagnostic
specifies whether the Simulink software
displays a warning if the model contains a
conditionally executed subsystem, in which a
block with a specified initial condition drives
an Outport block with an undefined initial
condition. A conditionally executed subsystem
could have an output that is not initialized.
If undetected, this condition can produce
behavior that is nondeterministic.

In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, select Check undefined subsystem
initial output or set the parameter
CheckSSInitialOutputMsg to on.

14-36

DO-178B Checks

Condition Recommended Action

The diagnostic that detects potential initial
output differences from earlier releases is
cleared. A conditionally executed subsystem
could have an output that is not initialized.
If undetected, this condition can produce
behavior that is nondeterministic.

In the Configuration Parameters dialog box,
on the Diagnostics > Compatibility pane,
select Check preactivation output of
execution context or set the parameter
CheckExecutionContextPreStartOutputMsg
to on.

The diagnostic that detects potential output
differences from earlier releases is cleared. A
conditionally executed subsystem could have
an output that is not initialized and feeds into a
block with a tunable parameter. If undetected,
this condition can cause the behavior of the
downstream block to be nondeterministic.

In the Configuration Parameters dialog
box, on the Diagnostics > Compatibility
pane, select Check runtime output of
execution context or set the parameter
CheckExecutionContextRuntimeOutputMsg
to on.

Action Results
To configure the diagnostic settings that affect model initialization and that
might impact safety, click Modify Settings.

See Also

• “Diagnosing Simulation Errors” in the Simulink documentation

• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface
documentation

• For information on the DO-178B, Software Considerations in Airborne
Systems and Equipment Certification standard, Radio Technical
Commission for Aeronautics (RTCA)

14-37

http://www.rtca.org/aboutrtca.asp
http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for model
referencing
Check model configuration for diagnostic settings that apply to model
referencing and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to model referencing are set optimally for generating code for a safety-related
application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects a mismatch
between the version of the model that
creates or refreshes a Model block and the
current version of the referenced model is set
to error or warning. The detection occurs
during load and update operations. When
you get the latest version of the referenced
model from the software configuration
management system, rather than an
older version that was used in a previous
simulation, if this diagnostic is set to error,
the simulation is aborted. If the diagnostic is
set to warning, a warning message is issued.
To resolve the issue, the user must resave
the model being simulated, which may not
be the desired action. (See DO-178B, Section
6.3.3b – Software architecture is consistent.)

Set Model block version mismatch on
the Diagnostics > Model Referencing
pane of the Configuration Parameters
dialog box or set the parameter
ModelReferenceVersionMismatchMessage
to none.

14-38

DO-178B Checks

Condition Recommended Action

The diagnostic that detects port and
parameter mismatches during model loading
and updating is set to none or warning. If
undetected, such mismatches can lead to
incorrect simulation results because the
parent and referenced models have different
interfaces. (See DO-178B, Section 6.3.3b –
Software architecture is consistent.)

Set Port and parameter mismatch on the
Diagnostics > Model Referencing pane of the
Configuration Parameters dialog box or set the
parameter ModelReferenceIOMismatchMessage
to error.

The Model configuration mismatch
diagnostic is set to none or error. This
diagnostic checks whether the configuration
parameters of a model referenced by
the current model match the current
model’s configuration parameters or are
inappropriate for a referenced model.
Some diagnostics for referenced models
are not supported in simulation mode.
Setting this diagnostic to error can prevent
simulations from running. Some differences
in configurations can lead to incorrect
simulation results and mismatches between
simulation and target code generation.
(See DO-178B, Section 6.3.3b – Software
architecture is consistent.)

Set Model configuration mismatch on the
Diagnostics > Model Referencing pane of the
Configuration Parameters dialog box or set the
parameter ModelReferenceCSMismatchMessage
to warning.

The diagnostic that detects invalid internal
connections to the current model’s root-level
Inport and Outport blocks is set to none or
warning. When this condition is detected,
the Simulink software might automatically
insert hidden blocks into the model to correct
the condition. The hidden blocks can result
in generated code that has no traceable
requirements. Setting the diagnostic to
error forces model developers to correct the
referenced models manually. (See DO-178B,

Set Invalid root Inport/Outport block
connection on the Diagnostics > Model
Referencing pane of the Configuration
Parameters dialog box or set the parameter
ModelReferenceIOMessage to error.

14-39

14 Model Advisor Checks

Condition Recommended Action

Section 6.3.3b – Software architecture is
consistent.)

The diagnostic that detects whether To
Workspace or Scope blocks are logging data
in a referenced model is set to none or
warning. Data logging is not supported for
To Workspace and Scope blocks in referenced
models. (See DO-178B, Section 6.3.1d –
High-level requirements are verifiable
and DO-178B, Section 6.3.2d – Low-level
requirements are verifiable.)

Set Unsupported data logging on the
Diagnostics > Model Referencing pane of the
Configuration Parameters dialog box or set the
parameter ModelReferenceDataLoggingMessage
to error.
To log data, remove the blocks and log the
referenced model signals. For more information,
see “Logging Referenced Model Signals”.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to model referencing and that can impact safety.

See Also

• Diagnosing Simulation Errors in the Simulink documentation

• Diagnostics Pane: Model Referencing in the Simulink graphical user
interface documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

• “Logging Referenced Model Signals” in the Simulink documentation

14-40

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check safety-related model referencing settings
Check model configuration for model referencing settings that can impact
safety.

Description
This check verifies that model configuration parameters for model referencing
are set optimally for generating code for a safety-related application.

Results and Recommended Actions

Condition Recommended Action

The referenced model is configured such
that its target is rebuilt whenever you
update, simulate, or generate code for
the model, or if the Simulink software
detects any changes in known dependencies.
These configuration settings can result
in unnecessary regeneration of the code,
resulting in changing only the date of the file
and slowing down the build process when
using model references. (See DO-178B,
Section 6.3.1b – High-level requirements
are accurate and consistent and DO-178B,
Section 6.3.2b – Low-level requirements are
accurate and consistent.)

Set Rebuild options on the Model
Referencing pane of the Configuration
Parameters dialog box or set the parameter
UpdateModelReferenceTargets to Never or If
any changes detected.

The diagnostic that detects whether a
target needs to be rebuilt is set to None or
Warn if targets require rebuild. For
safety-related applications, an error should
alert model developers that the parent
and referenced models are inconsistent.
This diagnostic parameter is available
only if Rebuild options is set to Never.
(See DO-178B, Section 6.3.1b – High-level
requirements are accurate and consistent
and DO-178B, Section 6.3.2b – Low-level
requirements are accurate and consistent.)

Set Never rebuild targets diagnostic on the
Model Referencing pane of the Configuration
Parameters dialog box or set the parameter
CheckModelReferenceTargetMessage to Error
if targets require rebuild.

14-41

14 Model Advisor Checks

Condition Recommended Action

The ability to pass scalar root input by
value is on. This capability should be off
because scalar values can change during a
time step and result in unpredictable data.
(See DO-178B, Section 6.3.3b – Software
architecture is consistent.)

Set Pass scalar root inputs by value on the
Model Referencing pane of the Configuration
Parameters dialog box or set the parameter
ModelReferencePassRootInputsByReference to
off.

The model is configured to minimize
algebraic loop occurrences. This
configuration is incompatible with
the recommended setting of Single
output/update function for embedded
systems code. (See DO-178B, Section 6.3.3b
– Software architecture is consistent.)

Set Minimize algebraic loop occurrences
on the Model Referencing pane
of the Configuration Parameters
dialog box or set the parameter
ModelReferenceMinAlgLoopOccurrences
to off.

Action Results
Clicking Modify Settings configures model referencing settings that can
impact safety.

See Also

• Model Dependencies in the Simulink documentation

• Model Referencing Pane in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-42

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check safety-related code generation settings
Check model configuration for code generation settings that can impact safety.

Description
This check verifies that model configuration parameters for code generation
are set optimally for a safety-related application.

Results and Recommended Actions

Condition Recommended Action

The option to include comments in the
generated code is cleared. Comments are
necessary for good traceability between the
code and the model. (See DO-178B, Section
6.3.4e – Source code is traceable to low-level
requirements.)

Select Include comments on the Real-Time
Workshop > Comments > pane of the
Configuration Parameters dialog box or set the
parameter GenerateComments to on.

The option to include comments that
describe the code for blocks is cleared.
Comments are necessary for good
traceability between the code and the model.
(See DO-178B, Section 6.3.4e – Source code
is traceable to low-level requirements.)

Select Simulink block / Stateflow
object comments on the Real-Time
Workshop > Comments pane of the
Configuration Parameters dialog box or set the
parameter SimulinkBlockComments to on.

The option to include comments that
describe the code for blocks eliminated
from a model is cleared. Comments are
necessary for good traceability between the
code and the model. (See DO-178B, Section
6.3.4e – Source code is traceable to low-level
requirements.)

Select Show eliminated blocks on the
Real-Time Workshop > Comments pane of the
Configuration Parameters dialog box or set the
parameter ShowEliminatedStatement to on.

14-43

14 Model Advisor Checks

Condition Recommended Action

The option to include the names of
parameter variables and source blocks
as comments in the model parameter
structure declaration in model_prm.h is
cleared. Comments are necessary for good
traceability between the code and the model.
(See DO-178B, Section 6.3.4e – Source code
is traceable to low-level requirements.)

Select Verbose comments for SimulinkGlobal
storage class on the Real-Time
Workshop > Comments pane of the
Configuration Parameters dialog box or set the
parameter ForceParamTrailComments to on.

The option to include requirement
descriptions assigned to Simulink blocks
as comments is cleared. Comments are
necessary for good traceability between the
code and the model. (See DO-178B, Section
6.3.4e – Source code is traceable to low-level
requirements.)

Select Requirements in block comments on
the Real-Time Workshop > Comments pane of
the Configuration Parameters dialog box or set
the parameter ReqsInCode to on.

The option to generate nonfinite data
and operations is selected. Support for
nonfinite numbers is inappropriate for
real-time embedded systems. (See DO-178B,
Section 6.3.1c – High-level requirements
are compatible with target computer
and DO-178B, Section 6.3.2c – Low-level
requirements are compatible with target
computer.)

Clear Support: non-finite numbers on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportNonFinite to off.

The option to generate and maintain integer
counters for absolute and elapsed time
is selected. Support for absolute time is
inappropriate for real-time safety-related
systems. (See DO-178B, Section 6.3.1c –
High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Clear Support: absolute time on theReal-Time
Workshop > Interface pane of the Configuration
Parameters dialog box or set the parameter
SupportAbsoluteTime to off.

14-44

DO-178B Checks

Condition Recommended Action

The option to generate code for blocks that
use continuous time is selected. Support
for continuous time is inappropriate for
real-time safety-related systems. (See
DO-178B, Section 6.3.1c – High-level
requirements are compatible with target
computer and DO-178B, Section 6.3.2c –
Low-level requirements are compatible with
target computer.)

Clear Support: continuous time on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportContinuousTime to off.

The option to generate code for noninlined
S-functions is selected. This option requires
support of nonfinite numbers, which is
inappropriate for real-time safety-related
systems. (See DO-178B, Section 6.3.1c –
High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Clear Support: non-inlined S-functions on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportNonInlinedSFcns to off.

The option to generate model function calls
compatible with the main program module
of the GRT target is selected. This option is
inappropriate for real-time safety-related
systems. (See DO-178B, Section 6.3.1c –
High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Clear GRT compatible call interface on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter GRTInterface to off.

14-45

14 Model Advisor Checks

Condition Recommended Action

The option to generate the model_update
function is cleared. Having a single call to
the output and update functions simplifies
the interface to the real-time operating
system (RTOS) and simplifies verification
of the generated code. (See DO-178B,
Section 6.3.1c – High-level requirements
are compatible with target computer
and DO-178B, Section 6.3.2c – Low-level
requirements are compatible with target
computer.)

Select Single output/update function on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter CombineOutputUpdateFcns to on.

The option to generate the model_terminate
function is selected. This function
deallocates dynamic memory, which is not
appropriate for real-time safety-related
systems. (See DO-178B, Section 6.3.1c –
High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Clear Terminate function required on the
Real-Time Workshop > Interface pane of the
Configuration Parameters dialog box or set the
parameter IncludeMdlTerminateFcn to off.

The option to log or monitor error status
is cleared. If you do not select this option,
the Real-Time Workshop product generates
extra code that might not be reachable for
testing. (See DO-178B, Section 6.3.1c –
High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Select Suppress error status in real-time
model data structure on the Real-Time
Workshop > Interface pane of the Configuration
Parameters dialog box or set the parameter
SuppressErrorStatus to on.

14-46

DO-178B Checks

Condition Recommended Action

MAT-file logging is selected. This option
adds extra code for logging test points
to a MAT-file, which is not supported by
embedded targets. Use this option only in
test harnesses. (See DO-178B, Section 6.3.1c
– High-level requirements are compatible
with target computer and DO-178B,
Section 6.3.2c – Low-level requirements are
compatible with target computer.)

Clear MAT-file logging on the Real-Time
Workshop > Interface pane of the Configuration
Parameters dialog box or set the parameter
MatFileLogging to off.

The option that specifies the style for
parenthesis usage is set to Minimum (Rely
on C/C++ operators precedence) or to
Nominal (Optimize for readability).
For safety-related applications, explicitly
specify precedence with parentheses. (See
DO-178B, Section 6.3.1c – High-level
requirements are compatible with target
computer, DO-178B, Section 6.3.2c –
Low-level requirements are compatible with
target computer, and MISRA C 2004, Rule
12.1.)

Set Parenthesis level on the Real-Time
Workshop > Code pane of the Configuration
Parameters dialog box or set the parameter
ParenthesesLevel to Maximum (Specify
precedence with parentheses).

The option that specifies whether to
preserve operand order is cleared. This
option increases the traceability of the
generated code. (See DO-178B, Section
6.3.4e – Source code is traceable to low-level
requirements.)

Select Preserve operand order in expression
on the Real-Time Workshop > Code pane of the
Configuration Parameters dialog box or set the
parameter PreserveExpressionOrder to on.

14-47

14 Model Advisor Checks

Condition Recommended Action

The option that specifies whether to preserve
empty primary condition expressions in if
statements is cleared. This option increases
the traceability of the generated code. (See
DO-178B, Section 6.3.4e – Source code is
traceable to low-level requirements.)

Select Preserve condition expression in if
statement on the Real-Time Workshop > Code
pane of the Configuration Parameters dialog box
or set the parameter PreserveIfCondition to on.

The minimum number of characters
specified for generating name mangling
strings is less than four. You can use this
option to minimize the likelihood that
parameter and signal names will change
during code generation when the model
changes. Use of this option assists with
minimizing code differences between file
versions, decreasing the effort to perform
code reviews. (See DO-178B, Section 6.3.4e
– Source code is traceable to low-level
requirements.)

SetMinimum mangle length on the Real-Time
Workshop > Symbols pane of the Configuration
Parameters dialog box or the parameter
MangleLength to a value of 4 or greater.

Action Results
Clicking Modify Settings configures model code generation settings that
can impact safety.

Limitations
This check requires a Real-Time Workshop Embedded Coder license and an
ERT-based system target file.

See Also

• Real-Time Workshop Pane: Comments in the Real-Time Workshop
reference documentation

• Real-Time Workshop Pane: Symbols in the Real-Time Workshop reference
documentation

14-48

DO-178B Checks

• Real-Time Workshop Pane: Interface in the Real-Time Workshop reference
documentation

• Real-Time Workshop Pane: Code Style in the Real-Time Workshop
Embedded Coder reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-49

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check safety-related diagnostic settings for saving
Check model configuration for diagnostic settings that apply to saving model
files

Description
This check verifies that model configuration parameters are set optimally for
saving a model for a safety-related application.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether a model
contains disabled library links before the
model is saved is set to none or warning. If
this condition is undetected, incorrect code
might be generated. (See DO-178B, Section
6.3.3b - Software architecture is consistent.)

Set Block diagram contains disabled library
links on the Diagnostics > Saving> pane of the
Configuration Parameters dialog box or set the
parameter SaveWithDisabledLinkMsg to error.

The diagnostic that detects whether a
model contains library links that are using
parameters not in a mask before the model
is saved is set to none or warning. If this
condition is undetected, incorrect code might
be generated. (See DO-178B, Section 6.3.3b
- Software architecture is consistent.)

Set Block diagram contains parameterized
library links on the Diagnostics
> Saving> pane of the Configuration
Parameters dialog box or set the parameter
SaveWithParameterizedLinkMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to saving a model file.

See Also

• Disabling Links to Library Blocks in the Simulink documentation

• Identifying Disabled Library Links in the Simulink documentation

• Saving a Model in the Simulink documentation

14-50

DO-178B Checks

• Model Parameters in the Simulink documentation

• Diagnostics Pane: Saving in the Simulink documentation

14-51

14 Model Advisor Checks

Check for model objects that do not link to
requirements
Check whether Simulink blocks and Stateflow objects link to a requirements
document.

Description
This check verifies whether Simulink blocks and Stateflow objects link to a
document containing engineering requirements for traceability.

Analysis Results and Recommended Actions

Condition Recommended Action

Blocks do not link to a requirements
document. (See DO-178B, Section
6.3.1f - High-level requirements trace
to system requirements, Section
6.3.2f - Low-level requirements trace
to high-level requirements.)

Link to requirements document. See
.

Limitations
When you run this check, the Model Advisor does not follow library links
or look under masks. The Model Advisor reviews all top-level blocks in the
system.

Tip
Run this check from the top model or subsystem that you want to check.

See Also
Chapter 2, “Managing Model Requirements”

14-52

DO-178B Checks

Check for proper usage of Math blocks
Check whether math operators require nonfinite number support.

Description
This check verifies that Math Function blocks do not use math operations that
need nonfinite number support with real-time embedded targets.

Analysis Results and Recommended Actions

Condition Recommended Action

Math Function blocks using log
(natural logarithm), log10 (base 10
logarithm), and rem (Remainder)
operators that require nonfinite
number support. (See DO-178B,
Section 6.3.1g - Algorithms are
accurate, Section 6.3.2g - Algorithms
are accurate, and MISRA C 2004,
Rule 21.1)

When using the Math Function block
with a log or log10 function, you
must protect the input to the block
in the model such that it is not less
then or equal to zero. Otherwise, the
output can produce a NaN or Inf
and result in a run-time error in the
generated code.

When using the Math Function
block with a rem function, you must
protect the second input to the block
such that it is not equal to zero.
Otherwise the output can produce a
Inf or Inf and result in a run-time
error in the generated code.

Tips
With embedded systems, you must take care when using blocks that could
produce nonfinite outputs such as NaN, Inf or –Inf. Your design must protect
the inputs to these blocks in order to avoid run-time errors in the embedded
system.

See Also
Math Function block in the Simulink documentation

14-53

14 Model Advisor Checks

Check for proper usage of For Iterator blocks
Check for For Iterator blocks that have variable loops.

Description
This check verifies that a model does not use variable loops with For Iterator
blocks.

See

• DO-178B Section 6.3.1e – High-level requirements conform to standards

• DO-178B Section 6.3.2e – Low-level requirements conform to standards

• MISRA C 2004, Rule 13.6

Results and Recommended Actions

Condition Recommended Action

The model combines the use of variable
iteration values with a For Iterator block.
The use of variable for loops can lead to
unpredictable execution time and, in the
case of external iteration variables, infinite
loops.

To avoid the use of variable for loops, do one of
the following:

• Set the Iteration limit source parameter of
the For Iterator block to internal.

• If the Iteration limit source parameter of
the For Iterator block must be external, use a
Constant, Probe, or Width block as the source.

• Avoid selecting the Set next i (iteration
variable) externally parameter of the For
Iterator block.

See Also

• For Iterator Subsystem block in the Simulink reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-54

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Check for proper usage of While Iterator blocks
Check for While Iterator blocks that cause infinite loops.

Description
This check verifies that a model does not include infinite loops with While
Iterator blocks.

See

• DO-178B Section 6.3.1e – High-level requirements conform to standards

• DO-178B Section 6.3.2e – Low-level requirements conform to standards

• MISRA C 2004, Rule 21.1

Results and Recommended Actions

Condition Recommended Action

The model combines the use of a While
Iterator block with an unlimited number
of iterations. An unlimited number of
iterations can lead to infinite loops in
real-time code, which can lead to execution
time overruns.

To avoid infinite loops:

• Set the Maximum number of iterations
parameter of the While Iterator block to a
positive integer value.

• Consider selecting the Show iteration
number port parameter of the While Iterator
block and observe the iteration value during
simulation to determine whether the maximum
number of iterations is being reached. If
the loop reaches the maximum number of
iterations, verify whether the output values of
the While Iterator block are correct.

See Also

• While Iterator Subsystem block in the Simulink reference documentation

14-55

14 Model Advisor Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-56

http://www.rtca.org/aboutrtca.asp

DO-178B Checks

Display model version information
Display model version information in your report.

Description
This check displays the following information for the current model:

• Version number

• Author

• Date

• Model checksum

Results and Recommended Actions

Condition Recommended Action

Could not retrieve model version and
checksum information.

This summary is provided for your
information. No action is required.

See Also

• Validating Generated Code in the Real-Time Workshop documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-57

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check for proper usage of blocks that compute
absolute values
Check for absolute value blocks that have unreachable code or produce
overflows.

Description
This check verifies whether the model includes a block that attempts to
compute the absolute value of a Boolean or unsigned integer value.

See

• DO-178B Section 6.3.1d – High-level requirements are verifiable

• DO-178B Section 6.3.2d – Low-level requirements are verifiable

• DO-178B Section 6.3.1g – Algorithms are accurate

• DO-178B Section 6.3.2g – Algorithms are accurate

• MISRA C 2004, Rule 14.1

• MISRA C 2004, Rule 21.1

Results and Recommended Actions

Condition Recommended Action

The model includes a block that:

• Computes an absolute value and the input
signal of the block is a Boolean value or
an unsigned integer. Use of Boolean and
unsigned data types might result in code that
is unreachable and cannot be tested.

• Computes an absolute value of a signed
integer and Saturate on integer overflow
is not selected for that block. Taking the
absolute value of full scale negative integer
value results in an overflow.

• To avoid unreachable code, change the
input to the Absolute Value block to a
signed input type.

• To avoid overflows, select the Saturate
on integer overflow check box of the
Absolute Value block.

14-58

DO-178B Checks

See Also

• Abs block in the Simulink reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-59

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

Check for proper usage of Relational Operator blocks
Check for relational operator blocks that compare data types or equate
floating-point types.

Description
This check verifies that a model does not use the == or ~= operator with a
relational operator block to compare floating-point signals.

See

• DO-178B Section 6.3.1g – Algorithms are accurate

• DO-178B Section 6.3.2g – Algorithms are accurate

• MISRA C 2004, Rule 12.6

• MISRA C 2004, Rule 13.3

Results and Recommended Actions

Condition Recommended Action

The model includes a relational operator block
that uses the == or ~= operator to compare
floating-point signals. Because of floating-point
precision issues, the use of these operators on
floating-point signals is unreliable.

Change the data type of the signal or rework
the model to eliminate the need to use the
relational operator block with the == or ~=
operator.

See Also
Descriptions of the following blocks in the Simulink reference documentation

• Relational Operator block in the Simulink reference documentation

• Compare To Constant block in the Simulink documentation

• Compare To Zero block in the Simulink documentation

• Detect Change block in the Simulink documentation

14-60

DO-178B Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178B, Software Considerations in Airborne Systems and Equipment
Certification standard

14-61

http://www.rtca.org/aboutrtca.asp

14 Model Advisor Checks

IEC 61508 Checks

In this section...

“IEC 61508 Checks Overview” on page 14-62

“Display model metrics and complexity report” on page 14-64

“Check for unconnected objects” on page 14-65

“Check for fully defined interface” on page 14-66

“Check for questionable constructs” on page 14-68

“Check usage of Stateflow constructs” on page 14-70

“Check for model objects that do not link to requirements” on page 14-73

“Display configuration management data” on page 14-74

“Check usage of Simulink constructs” on page 14-75

IEC 61508 Checks Overview
IEC 61508 checks facilitate designing and troubleshooting Simulink models
and subsystems and the code that you generate from it for applications that
need to comply with IEC 61508-3.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the IEC 61508 checks.

Tips
If your model uses model referencing, run the IEC 61508 checks on all
referenced models before running them on the top-level model.

See Also

• IEC 61508–3 Functional safety of electrical/electronic/programmable
electronic safety-related systems — Part 3: Software requirements

• Developing Models and Code That Comply with the IEC 16508 Standard in
the Real-Time Workshop Embedded Coder documentation

• “Consulting the Model Advisor” in the Simulink documentation

14-62

IEC 61508 Checks

• “Simulink Checks” in the Simulink reference documentation

• “Real-Time Workshop Checks” in the Real-Time Workshop documentation

14-63

14 Model Advisor Checks

Display model metrics and complexity report
Display number of elements and name, level, and depth of subsystems for the
model or subsystem.

Description
The IEC 61508 standard recommends the usage of size and complexity
metrics to assess the software under development. This check provides model
metrics information for the model. The provided information can be used to
inspect whether the size or complexity of the model or subsystem exceeds
given limits. The check displays:

• A block count for each Simulink block type contained in the given model.

• The maximum subsystem depth of the given model.

• A count of Stateflow constructs in the given model (if applicable).

• Name, level, and depth of the subsystems contained in the given model (if
applicable).

See IEC 61508-3, Table A.9 (5) – Software complexity metrics.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

See Also

• sldiagnostics in the Simulink documentation

• “Cyclomatic Complexity” in the Stateflow documentation

14-64

IEC 61508 Checks

Check for unconnected objects
Identify unconnected lines, input ports, and output ports in the model.

Description
Unconnected objects are likely to cause problems propagating signal
attributes such as data, type, sample time, and dimensions.

Ports connected to Ground or Terminator blocks pass this check.

See IEC 61508-3, Table A.3 (3) — Language subset.

Results and Recommended Actions

Condition Recommended Action

There are unconnected lines, input
ports, or output ports in the model
or subsystem.

• Double-click an element in the list
of unconnected items to locate the
item in the model diagram.

• Properly connect the objects
identified in the results.

See Also
“Working with Signals” in the Simulink documentation

14-65

14 Model Advisor Checks

Check for fully defined interface
Identify root model Inport blocks that do not have fully defined attributes.

Description
Using root model Inport blocks that do not have fully define dimensions,
sample time, or data type can lead to undesired simulation results. Simulink
back-propagates dimensions, sample times, and data types from downstream
blocks unless you explicitly assign these values.

See IEC 61508-3, Table B.9 (5) – Fully defined interface.

Results and Recommended Actions

Condition Recommended Action

The model has root-level Inport
blocks that have undefined
attributes, such as an inherited
sample time, data type, or port
dimension.

Explicitly define all root-level Inport
block attributes identified in the
results. Double-click an element
from the list of underspecified items
to locate the condition.

Tips
The following configurations pass this check:

• Inport blocks with inherited port dimensions in conjunction with the usage
of bus objects

• Inport blocks with automatically inherited data types in conjunction with
bus objects

• Inport blocks with inherited sample times in conjunction with the Periodic
sample time constraint menu set to Ensure sample time independent

See Also

• Working with Data Types in the Simulink documentation

• Determining Output Signal Dimensions in the Simulink documentation

14-66

IEC 61508 Checks

• Specifying Sample Time in the Simulink documentation

14-67

14 Model Advisor Checks

Check for questionable constructs
Identify blocks not supported by code generation or not recommended for
deployment.

Description
This check partially identifies model constructs that are not suited for code
generation or not recommended for production code generation as identified
in the Simulink Block Support tables for Real-Time Workshop and Real-Time
Workshop Embedded Coder. If you are using blocks with support notes for
code generation, review the information and follow the given advice.

See IEC 61508-3, Table A.3 (3) – Language subset.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
blocks that should not be used for
code generation.

Consider replacing the blocks listed
in the results. Double-click an
element from the list of questionable
items to locate condition.

The model or subsystem contains
blocks that should not be used for
production code deployment.

Consider replacing the blocks listed
in the results. Double-click an
element from the list of questionable
items to locate condition.

The model or subsystem contains
Gain blocks whose value equals 1.

If you are using Gain blocks as
buffers, consider replacing them
with Signal Conversion blocks.
Double-click an element from the
list of questionable items to locate
condition.

Limitation
This check might not identify all instances of noncompliance with the
Real-Time Workshop and Real-Time Workshop Embedded Coder tables.

14-68

IEC 61508 Checks

See Also

• tables in the Real-Time Workshop documentation for Real-Time Workshop
and Real-Time Workshop Embedded Coder

• “Developing Models for Code Generation” in the Real-Time Workshop
Embedded Coder documentation

14-69

14 Model Advisor Checks

Check usage of Stateflow constructs
Identify usage of Stateflow constructs that might impact safety.

Description
This check identifies instances of Stateflow software being used in a way that
can impact an application’s safety, including

• Use of strong data typing

• Port name mismatches

• Scope of data objects and events

• Formatting of state action statements

See

• IEC 61508-3, Table A.3 (2) – Strongly typed programming language

• IEC 61508-3, Table A.3 (3) – Language subset

• IEC 61508-3, Table B.9 (2) – Information hiding/encapsulation

• MISRA C 2004, Rule 10.1

• MISRA C 2004, Rule 10.2

• MISRA C 2004, Rule 10.3

• MISRA C 2004, Rule 10.4

• MAAB Control Algorithm Modeling Guidelines, db_0122: Stateflow and
Simulink interface signals and parameters

• MAAB Control Algorithm Modeling Guidelines, db_0123: Stateflow port
names

• MAAB Control Algorithm Modeling Guidelines, db_0125: Scope of internal
signals and local auxiliary variables

• MAAB Control Algorithm Modeling Guidelines, db_0126: Scope of events

• MAAB Control Algorithm Modeling Guidelines, jc_0501: Format of entries
in a State block

14-70

IEC 61508 Checks

Results and Recommended Actions

Condition Recommended Action

A Stateflow chart is not configured
for strong data typing on boundaries
between a Simulink model and the
Stateflow chart.

Enable the option Use Strong
Data Typing with Simulink I/O
for the Stateflow chart. When you
enable this option, the Stateflow
chart accepts input signals of any
data type that Simulink models
support, provided that the type of
the input signal matches the type of
the corresponding Stateflow input
data object.

Signals have names that differ
from those of their corresponding
Stateflow ports.

• Check whether the ports are
connected properly and, if not,
correct the connections.

• Change the names of the signals
or the Stateflow ports so that the
names match.

Events are not defined in the
Stateflow hierarchy at the chart
level or below.

Define events at the chart level or
below.

Local data is not defined in the
Stateflow hierarchy at the chart
level or below.

Define local data at the chart level
or below.

A new line is missing from a state
action after

• An entry (en), during (du), or
exit (ex) statement

• The semicolon (;) at the end of an
assignment statement

Add missing new lines.

See Also
See the following topics in the Stateflow documentation

14-71

14 Model Advisor Checks

• “Strong Data Typing with Simulink I/O”

• “Property Fields”

• “Defining Events”

• “Defining Data”

• “Labeling States”

14-72

IEC 61508 Checks

Check for model objects that do not link to
requirements
Check whether Simulink blocks and Stateflow objects link to a requirements
document.

Description
This check verifies whether Simulink blocks and Stateflow objects link to a
document containing engineering requirements for traceability.

Analysis Results and Recommended Actions

Condition Recommended Action

Blocks do not link to a requirements
document. (See IEC 61508-3, Table
A.1 (1) ’Computer-aided specification
tools’, Table A.2 (8) ’Computer-aided
specification tools’, and Table A.8 (1)
’Impact analysis’.)

Link to requirements document. See
.

Limitations
When you run this check, the Model Advisor does not follow library links
or look under masks. The Model Advisor reviews all top-level blocks in the
system.

Tip
Run this check from the top model or subsystem that you want to check.

See Also
Chapter 2, “Managing Model Requirements”

14-73

14 Model Advisor Checks

Display configuration management data
Display model configuration and checksum information.

Description
This informer check displays the following information for the current model:

• Model version number

• Model author

• Date

• Model checksum

See IEC 61508-3, Table A.8 (5) – Software configuration management.

Results and Recommended Actions

Condition Recommended Action

Could not retrieve model version and
checksum information.

This summary is provided for your
information. No action is required.

See Also

• “How Simulink Helps You Manage Model Versions” in the Simulink
documentation

• Model Change Log in the Simulink Report Generator documentation

• Simulink.BlockDiagram.getChecksum in the Simulink documentation

• Simulink.SubSystem.getChecksum in the Simulink documentation

14-74

IEC 61508 Checks

Check usage of Simulink constructs
Identify usage of Simulink constructs that might impact safety.

Description
Blocks that you use incorrectly can result in unreachable code, incorrect or
unpredictable results, infinite loops, and unpredictable execution times in
generated code.

This check inspects your model for proper usage of:

• Abs blocks

• Blocks that compute relational operators including Relational Operator,
Compare To Constant, Compare To Zero, and Detect Change blocks

• While Iterator blocks

• For Iterator blocks

See

• IEC 61508-3, Table A.3 (2) – Strongly typed programming language

• IEC 61508-3, Table A.3 (3) – Language subset

• IEC 61508-3, Table A.4 (3) – Defensive programming

• IEC 61508-3, Table B.8 (3) – Control Flow Analysis

• MISRA C 2004, Rule 13.3

• MISRA C 2004, Rule 13.6

• MISRA C 2004, Rule 14.1

• MISRA C 2004, Rule 21.1

14-75

14 Model Advisor Checks

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
an Abs block that is operating on
a Boolean or an unsigned input
data type. This condition results in
unreachable simulation pathways
through the model and might result
in unreachable code.

• Change the input of the Abs block
to a signed input type.

• Remove the Absfrom the model.

The model or subsystem contains
an Abs block that is operating on
a signed integer value, and the
Saturate on integer overflow
check box is cleared. For signed data
types, the absolute value of the most
negative value is problematic since
it is not representable by the data
type. This condition results in an
overflow in the generated code.

Select the Saturate on integer
overflow check box of the specified
Abs blocks.

The model or subsystem contains
a block computing a relational
operator that is operating on
different data types. The condition
can lead to unpredictable results in
the generated code.

For the specified blocks, use common
data types as inputs.

The model or subsystem contains
a block computing a relational
operator that is not generating
Boolean data as its output. This
condition violates strong data typing
rules and can lead to unpredictable
results in the generated code.

Set the Output data type
to boolean in the Block
Parameters > Signal Attributes
pane for the specified blocks.

14-76

IEC 61508 Checks

Condition Recommended Action

The model or subsystem contains
a block computing a relational
operator that uses the == or ~=
operator to compare floating-point
signals. The use of these operators on
floating-point signals is unreliable
and unpredictable because of
floating-point precision issues, and
can lead to unpredictable results in
the generated code.

For the specified blocks, do one of
the following:

• Change the signal data type.

• Rework the model to eliminate
the need to use == or ~= operators
on floating-point signals.

The model or subsystem contains
a While Iterator block that has
unlimited iterations. This condition
can lead to infinite loops in the
generated code.

For the specified While Iterator
blocks:

• Set the Maximum number of
iterations (-1 for unlimited)
parameter to a positive integer
value.

• Consider selecting the Show
iteration number port check
box and observe the iteration
value during simulation.

The model or subsystem contains a
For Iterator block that has variable
iterations. This condition can lead
to unpredictable execution times or
infinite loops in the generated code.

For the specified For Iterator blocks,
do one of the following:

• Set the Iteration limit source
parameter to internal.

• If the Iteration limit source
parameter must be external, use
a Constant, Probe, or Width block
as the source.

• Clear the Set next i (iteration
variable) externally check box.

• Consider selecting the Show
iteration variable check box and

14-77

14 Model Advisor Checks

Condition Recommended Action

observe the iteration value during
simulation.

See Also
Descriptions of the following blocks in the Simulink reference documentation:

• Abs block

• Relational Operator block

• Compare To Constant block

• Compare To Zero block

• Detect Change block

• While Iterator block

• For Iterator block

14-78

MathWorks™ Automotive Advisory Board Checks

MathWorks Automotive Advisory Board Checks

In this section...

“MathWorks Automotive Advisory Board Checks Overview” on page 14-81

“Check for difference in font and font sizes” on page 14-82

“Check transition orientations in flow charts” on page 14-84

“Check for display of nondefault block attributes” on page 14-85

“Check for proper labeling on signal lines” on page 14-86

“Check for propagated labels on signal lines” on page 14-88

“Check default transition placement in Stateflow charts” on page 14-90

“Check setting Stateflow graphical function return value” on page 14-91

“Check for blocks not using one-based indexing” on page 14-92

“Check for invalid file names” on page 14-94

“Check for invalid model directory names ” on page 14-96

“Check for blocks that are not discrete ” on page 14-97

“Check for prohibited sink blocks” on page 14-98

“Check for invalid port positioning and configuration” on page 14-99

“Check for mismatches between names of ports and corresponding signals”
on page 14-101

“Check whether block names do not appear below blocks” on page 14-102

“Check for systems that mix primitive blocks and subsystems” on page
14-103

“Check whether model has unconnected block input ports, output ports, or
signal lines” on page 14-105

“Check for improperly positioned Trigger and Enable blocks” on page 14-106

“Check whether annotations have drop shadows” on page 14-107

“Check whether tunable parameters specify expressions, data type
conversions, or indexing operations” on page 14-108

14-79

14 Model Advisor Checks

In this section...

“Check whether Stateflow events are defined at the chart level or below”
on page 14-110

“Check whether Stateflow data objects with local scope are defined at the
chart level or below” on page 14-111

“Check interface signals and parameters” on page 14-112

“Check for exclusive states, default states, and substate validity” on page
14-113

“Check optimization parameters for Boolean data types” on page 14-115

“Check model diagnostic settings” on page 14-116

“Check the display attributes of block names” on page 14-119

“Check icon display attributes for port blocks” on page 14-120

“Check whether subsystem block names include invalid characters” on
page 14-121

“Check whether Inport and Outport block names include invalid characters”
on page 14-123

“Check whether signal line names include invalid characters” on page
14-125

“Check whether block names include invalid characters” on page 14-127

“Check Trigger and Enable block port names” on page 14-129

“Check for Simulink diagrams that have nonstandard appearance
attributes” on page 14-130

“Check visibility of port block names” on page 14-133

“Check for direction of subsystem blocks” on page 14-135

“Check for proper position of constants used in Relational Operator blocks”
on page 14-136

“Check for entry format in state blocks” on page 14-137

“Check for use of tunable parameters in Stateflow” on page 14-139

“Check for proper use of Switch blocks” on page 14-140

“Check for proper use of signal buses and Mux block usage” on page 14-141

14-80

MathWorks™ Automotive Advisory Board Checks

In this section...

“Check for mismatches between Stateflow ports and associated signal
names” on page 14-143

“Check for proper scope of From and Goto blocks” on page 14-144

MathWorks Automotive Advisory Board Checks
Overview
MathWorks Automotive Advisory Board (MAAB) checks facilitate designing
and troubleshooting models from which code is generated for automotive
applications.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the MAAB checks.

See Also

• “Consulting the Model Advisor” in the Simulink documentation

• “Simulink Checks” in the Simulink reference documentation

• “Real-Time Workshop Checks” in the Real-Time Workshop documentation

• MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

• The MathWorks Automotive Advisory Board on the MathWorks Web site,
which lists downloads for the latest version of Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow

14-81

http://www.mathworks.com/industries/auto/maab.html

14 Model Advisor Checks

Check for difference in font and font sizes
Check for difference in font and font sizes.

Description
With the exception of free text annotations within a model, text elements,
such as block names, block annotations, and signal labels, must have the same
font style and font size. Select a font style and font size that is legible and
portable (convertible between platforms), such as Arial or Helvetica 12 point.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline db_0043: Simulink font and font size.

Input Parameters

Font Name
Apply the specified font to all text elements. Available fonts include
Helvetica (default), Arial, Arial Black, Mangal, or Modern.

Font Size
Apply the specified font size to all text elements. Available sizes include
-1, 6, 8, 9, 10 (default), 12, 14, 16, 18, 20, 22, and 24.

Font Angle
Apply the specified font angle to all text elements. Available angles
include auto (default), normal, italic, and oblique.

Font Weight
Apply the specified font weight to all text elements. Available weights
include auto (default), normal, light, demi , and bold.

14-82

MathWorks™ Automotive Advisory Board Checks

Results and Recommended Actions

Condition Recommended Action

The fonts or font sizes for text
elements in the model are not
consistent or portable.

Specify values for the font
parameters and click Modify
all Fonts, or manually change the
fonts and font sizes of text elements
in the model such that they are
consistent and portable.

Action Results
ClickingModify all Fonts changes the font and font size of all text elements
in the model according to the values you specify for the font parameters.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-83

14 Model Advisor Checks

Check transition orientations in flow charts
Check transition orientations in flow charts.

Description
The following rules apply to transitions in flow charts:

• Draw transition conditions horizontally.

• Draw transitions with a condition action vertically.

Loop constructs are exceptions to these rules.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0132: Transitions in Flowcharts.

Results and Recommended Actions

Condition Recommended Action

The model includes a transition
with a condition that is not drawn
horizontally or a transition action
that is not drawn vertically.

Modify the model.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-84

MathWorks™ Automotive Advisory Board Checks

Check for display of nondefault block attributes
Check for display of nondefault block attributes.

Description
Model diagrams should display block parameters that have values other than
default values. One way of displaying this information is by using the Block
Annotation tab in the Block Properties dialog box.

This guideline facilitates

• Readability

• Verification and validation

See MAAB guideline db_0140: Display of basic block parameters.

Results and Recommended Actions

Condition Recommended Action

Block parameters that have values
other than default values do not
appear in the model display.

Use the Block Annotation tab in
the Block Properties dialog to add
block parameter annotations.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-85

14 Model Advisor Checks

Check for proper labeling on signal lines
Check for proper labeling on signal lines.

Description
You should use a label to identify:

• Signals originating from the following blocks (the block icon exception
noted below applies to all blocks listed except Inport, Bus Selector, Demux,
and Selector):

Bus Selector block (tool forces labeling)
Chart block (Stateflow)
Constant block
Data Store Read block
Demux block
From block
Inport block
Selector block
Subsystem block

Block Icon Exception If a signal label is visible in the display of the
icon for the originating block, you do not have to display a label for the
connected signal unless the signal label is needed elsewhere due to a rule
for signal destinations.

• Signals connected to one of the following destination blocks (directly
or indirectly with a basic block that performs an operation that is not
transformative):

Bus Creator block
Chart block (Stateflow)
Data Store Write block
Goto block
Mux block
Outport block
Subsystem block

14-86

MathWorks™ Automotive Advisory Board Checks

• Any signal of interest.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

• Code generation

See MAAB guideline na_0008: Display of labels on signals.

Results and Recommended Actions

Condition Recommended Action

Signals coming from Bus Selector,
Chart, Constant, Data Store Read,
Demux, From, Inport, or Selector
blocks are not labeled.

Double-click the line that represents
the signal. After the text cursor
appears, enter a name and click
anywhere outside the label to exit
label editing mode.

See Also

• Signal Labels in the Simulink documentation

• MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-87

14 Model Advisor Checks

Check for propagated labels on signal lines
Check for propagated labels on signal lines.

Description
You should propagate a signal label from its source rather than enter the
signal label explicitly (manually) if the signal originates from:

• An Inport block in a nested subsystem. However, if the nested subsystem
is a library subsystem, you can explicitly label the signal coming from the
Inport block to accommodate reuse of the library block.

• A basic block that performs a nontransformative operation.

• A Subsystem or Stateflow Chart block. However, if the connection
originates from the output of an instance of the library block, you can
explicitly label the signal to accommodate reuse of the library block.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

• Code generation

See MAAB guideline na_0009: Entry versus propagation of signal labels.

Results and Recommended Actions

Condition Recommended Action

The model includes signal labels that
were entered explicitly, but should
be propagated.

Use the open angle bracket (<)
character to mark signal labels
that should be propagated and
remove the labels that were entered
explicitly.

14-88

MathWorks™ Automotive Advisory Board Checks

See Also

• Signal Labels in the Simulink documentation

• MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-89

14 Model Advisor Checks

Check default transition placement in Stateflow
charts
Check default transition placement in Stateflow charts.

Description
In a Stateflow chart, you should connect the default transition at the top of
the state and place the destination state of the default transition above other
states in the hierarchy.

Properly position the default transition and its destination state for:

• Readability

See MAAB guideline jc_0531: Placement of the default transition.

Results and Recommended Actions

Condition Recommended Action

The default transition for a Stateflow
chart is not connected at the top of
the state.

Move the default transition to the
top of the state chart.

The destination state of a Stateflow
chart’s default transition is lower
than other states in the same
hierarchy.

Adjust the position of the default
transition’s destination state such
that the state is above other states
in the same hierarchy.

See Also

• “Defining Transitions Between States” in the Stateflow documentation

• MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-90

MathWorks™ Automotive Advisory Board Checks

Check setting Stateflow graphical function return
value
Check setting Stateflow graphic function return value.

Description
The return value from a Stateflow graphical function must be set in only
one place.

This guideline facilitates

• Workflow

• Code generation

See MAAB guideline jc_0511: Setting the return value from a graphical
function.

Results and Recommended Actions

Condition Recommended Action

The return value from a Stateflow
graphical function is set in multiple
places.

Modify the function such that its
return value is set in one place.

See Also

• “Graphical Functions” in the Stateflow documentation

• MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-91

14 Model Advisor Checks

Check for blocks not using one-based indexing
Check for blocks that do not use one-based indexing.

Description
One-based indexing ([1, 2, 3,...]) is used for the following:

Product Items

MATLAB • Workspace variables and structures

• Local variables of MATLAB functions

• Global variables

Simulink • Signal vectors and matrices

• Parameter vectors and matrices

• S-function input and output signal vectors
and matrices in M-code

• S-function parameter vectors and matrices
in M-code

• S-function local variables in M-code

Stateflow • Input and output signal vectors and
matrices

• Parameter vectors and matrices

• Local variables

Zero-based indexing ([0, 1, 2, ...]) is used for the following:

14-92

MathWorks™ Automotive Advisory Board Checks

Product Items

Simulink • Signal vectors and matrices

• S-function input and output signal vectors
and matrices in C code

• S-function input parameters in C code

• S-function parameter vectors and matrices
in C code

• S-function local variables in C code

Stateflow • Variables and structures in custom C code

C code • Local variables and structures

• Global variables

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline db_0112: Indexing.

Results and Recommended Actions

Condition Recommended Action

Blocks in your model are not
configured for one-based indexing.

Using block parameters, configure
all blocks for one-based indexing.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-93

14 Model Advisor Checks

Check for invalid file names
Check for files residing in the same folder as the model that have illegal file
names.

Description
This guideline facilitates

• Readability

• Workflow

See MAAB guideline ar_0001: Filenames.

Results and Recommended Actions

Condition Recommended Action

The file name contains illegal
characters.

Rename the file. Allowed characters
are a–z, A–Z, 0–9. and underscore
(_).

The file name starts with a number. Rename the file.

The file name starts with an
underscore ("_").

Rename the file.

The file name ends with an
underscore ("_").

Rename the file.

The file extension contains one (or
more) underscores.

Change the file extension.

The file name has consecutive
underscores.

Rename the file.

The file name contains more than
one dot (".").

Rename the file.

14-94

MathWorks™ Automotive Advisory Board Checks

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-95

14 Model Advisor Checks

Check for invalid model directory names
Checks model directory and subdirectory names for invalid characters.

Description
This guideline facilitates

• Readability

• Workflow

See MAAB guideline ar_0002: Directory names.

Results and Recommended Actions

Condition Recommended Action

The directory name contains illegal
characters.

Rename the directory. Allowed
characters are a–z, A–Z, 0–9. and
underscore (_).

The directory name starts with a
number.

Rename the directory.

The directory name starts with an
underscore ("_").

Rename the directory.

The directory name ends with an
underscore ("_").

Rename the directory.

The directory name has consecutive
underscores.

Rename the directory.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-96

MathWorks™ Automotive Advisory Board Checks

Check for blocks that are not discrete
Check for blocks that are not discrete.

Description
You cannot include continuous blocks in controller models.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jm_0001: Prohibited Simulink standard blocks inside
controllers.

Results and Recommended Actions

Condition Recommended Action

Continuous blocks — Derivative,
Integrator, State-Space, Transfer
Fcn, Transfer Delay, Variable Time
Delay, Variable Transport Delay,
and Zero-Pole — are not permitted
in models representing discrete
controllers.

Replace continuous blocks with
the equivalent blocks discretized
in the s-domain by using the
Discretizing library, as explain in
“How to Discretize Blocks from the
Simulink Model” in the Simulink
documentation.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-97

14 Model Advisor Checks

Check for prohibited sink blocks
Check for prohibited Simulink sink blocks.

Description
You must design controller models from discrete blocks. Sink blocks, such
as the Scope block, are not allowed.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline hd_0001: Prohibited Simulink sinks.

Results and Recommended Actions

Condition Recommended Action

Sink blocks are not permitted in
discrete controllers.

Remove sink blocks from the model.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-98

MathWorks™ Automotive Advisory Board Checks

Check for invalid port positioning and configuration
Check whether the model contains ports with invalid position and
configuration.

Description
In models, ports must comply with the following rules:

• Place Inport blocks on the left side of the diagram. Move the Inport block
right only to prevent signal crossings.

• Place Outport blocks on the right side of the diagram. Move the Outport
block left only to prevent signal crossings.

• Avoid using duplicate Inport blocks at the subsystem level if possible.

• Do not use duplicate Inport blocks at the root level.

This guideline facilitates

• Readability

See MAAB guideline db_0042: Port block in Simulink models.

Results and Recommended Actions

Condition Recommended Action

Inport blocks are too far to the right
and result in left-flowing signals.

Move the specified Inport blocks to
the left.

Outport blocks are too far to the left
and result in right-flowing signals.

Move the specified Output blocks to
the right.

14-99

14 Model Advisor Checks

Condition Recommended Action

Ports do not have the default
orientation.

Modify the model diagram such that
signal lines for output ports enter
the side of the block and signal lines
for input ports exit the right side of
the block.

Ports are duplicate Inport blocks. • If the duplicate Inport blocks are
in a subsystem, remove them
where possible.

• If the duplicate Inport blocks are
at the root level, remove them.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-100

MathWorks™ Automotive Advisory Board Checks

Check for mismatches between names of ports and
corresponding signals
Check for mismatches between names of ports and corresponding signals.

Description
Use matching names for ports and their corresponding signals.

This guideline facilitates

• Readability

• Workflow

• Simulation

See MAAB guideline jm_0010: Port block names in Simulink models.

Prerequisite
Prerequisite MAAB guidelines for this check are:

• db_0042: Port block in Simulink models

• na_0005: Port block name visibility in Simulink models

Results and Recommended Actions

Condition Recommended Action

Ports have names that differ from
their corresponding signals.

Change the port name or the signal
name to match the correct name for
the signal.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-101

14 Model Advisor Checks

Check whether block names do not appear below
blocks
Check whether block names do not appear below blocks.

Description
If shown, the name of all blocks should appear below the blocks.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline db_0142: Position of block names.

Results and Recommended Actions

Condition Recommended Action

Blocks have names that do not
appear below the blocks.

Set the name of the block to appear
below the blocks.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-102

MathWorks™ Automotive Advisory Board Checks

Check for systems that mix primitive blocks and
subsystems
Check for systems that mix primitive blocks and subsystems.

Description
You must design every level of a model with building blocks of the same type,
for example, only subsystems or only primitive (basic) blocks.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0143: Similar block types on the model levels.

Results and Recommended Actions

Condition Recommended Action

A level in the model includes both
subsystem blocks and primitive
blocks.

• Move nonvirtual blocks into the
subsystem.

• If possible, replace blocks at
the identified level of the model
hierarchy with blocks that you can
place at any module level. Such
blocks include Inport, Outport,
Enable (not at highest model
level), Trigger (not at highest
model level), Mux, Demux, Bus
Selector, Bus Creator, Selector,
Ground, Terminator, From, Goto,
Switch, Multiport Switch, Merge,
Unit Delay, Rate Transition, Type
Conversion, Data Store Memory,
If, and Switch Case.

14-103

14 Model Advisor Checks

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-104

MathWorks™ Automotive Advisory Board Checks

Check whether model has unconnected block input
ports, output ports, or signal lines
Check whether model has unconnected input ports, output ports, or signal
lines.

Description
All unconnected inputs should be connected to ground blocks. All unconnected
outputs should be connected to terminator blocks. Respecting the guideline
eliminates error messages.

See MAAB guideline db_0081: Unconnected signals, block inputs and block
outputs.

Results and Recommended Actions

Condition Recommended Action

Blocks have unconnected inputs or
outputs.

Connect unconnected lines to blocks
specified by the design or to Ground
or Terminator blocks.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-105

14 Model Advisor Checks

Check for improperly positioned Trigger and Enable
blocks
Check for improperly positioned Trigger and Enable blocks.

Description
Locate blocks that define subsystems as conditional or iterative at the top
of the subsystem diagram.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0146: Triggered, enabled, conditional Subsystems.

Results and Recommended Actions

Condition Recommended Action

Trigger , Enable, and Action Port
blocks are not centered in the upper
third of the model diagram.

Move the Trigger, Enable, and
Action Port blocks to the correct area
of the model diagram.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-106

MathWorks™ Automotive Advisory Board Checks

Check whether annotations have drop shadows
Check whether annotations have drop shadows.

Description
Annotations should not have a drop shadow for readability.

This guideline facilitates

• Readability

See MAAB guideline jm_0013: Annotations.

Results and Recommended Actions

Condition Recommended Action

Annotations display drop shadows. Clear the Format > Show Drop
Shadow menu option.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-107

14 Model Advisor Checks

Check whether tunable parameters specify
expressions, data type conversions, or indexing
operations
Check whether tunable parameters specify expressions, data type conversions,
or indexing operations.

Description
To ensure that a parameter is tunable, you must enter the basic block without
the use of MATLAB calculations or scripting. For example, omit

• Expressions

• Data type conversions

• Selections of rows or columns

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline db_0110: Tunable parameters in basic blocks.

Results and Recommended Actions

Condition Recommended Action

Blocks have a tunable parameter
that specifies an expression,
data type conversion, or indexing
operation.

In each case, move the calculation
outside of the block, for example,
by performing the calculation with
a series of Simulink blocks, or
precompute the value in the base
workspace as a new variable.

14-108

MathWorks™ Automotive Advisory Board Checks

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-109

14 Model Advisor Checks

Check whether Stateflow events are defined at the
chart level or below
Check whether Stateflow events are defined at the chart level or below.

Description
All events of a Stateflow chart must be defined at the chart level or lower.
Events cannot be at the machine level; that is, charts cannot interact with
local events.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0126: Scope of events.

Results and Recommended Actions

Condition Recommended Action

An event in a chart is not defined at
the chart level or below.

Define the event at the chart level
or below.

See Also

• “Defining Events” in the Stateflow documentation.

• MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-110

MathWorks™ Automotive Advisory Board Checks

Check whether Stateflow data objects with local
scope are defined at the chart level or below
Check whether Stateflow data objects with local scope are defined at the
chart level or below.

Description
You must define all local data of a Stateflow block on the chart level or below
in the object hierarchy. You cannot define local variables on the machine
level; however, parameters and constants are allowed at the machine level.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0125: Scope of internal signals and local auxiliary
variables.

Results and Recommended Actions

Condition Recommended Action

Local data is not defined in the
Stateflow hierarchy at the chart
level or below.

Define local data at the chart level
or below.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-111

14 Model Advisor Checks

Check interface signals and parameters
Check whether labeled Stateflow and Simulink input and output signals
are strongly typed.

Description
Strong data typing between Stateflow and Simulink input and output signals
is required.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0122: Stateflow and Simulink interface signals and
parameters.

Results and Recommended Actions

Condition Recommended Action

A Stateflow chart does not use strong
data typing with Simulink.

Select theUse Strong Data Typing
with Simulink I/O check box for
the specified block.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-112

MathWorks™ Automotive Advisory Board Checks

Check for exclusive states, default states, and
substate validity
Check states in state machines.

Description
In state machines:

• There must be at least two exclusive states.

• A state cannot have only one substate.

• The initial state of a hierarchical level with exclusive states is clearly
defined by a default transition.

This guideline facilitates

• Readability

• Workflow

• Verification and validation

See MAAB guideline db_0137: States in state machines.

Prerequisite
A prerequisite MAAB guideline for this check is db_0149: Flowchart patterns
for condition actions.

Results and Recommended Actions

Condition Recommended Action

A system is underspecified. Validate that the intended design
is properly represented in the
Stateflow diagram.

Chart has only one exclusive (OR)
state.

Make the state a parallel state, or
add another exclusive (OR) state.

14-113

14 Model Advisor Checks

Condition Recommended Action

Chart does not have a default state
defined.

Define a default state.

Chart has multiple default states
defined.

Define only one default state. Make
the others nondefault.

State has only one exclusive (OR)
substate.

Make the state a parallel state, or
add another exclusive (OR) state.

State does not have a default
substate defined.

Define a default substate.

State has multiple default substates
defined.

Define only one default substate,
make the others nondefault.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-114

MathWorks™ Automotive Advisory Board Checks

Check optimization parameters for Boolean data
types
Check the optimization parameter for Boolean data types.

Description
Optimization for Boolean data types is required

This guideline facilitates

• Workflow

• Code generation

See MAAB guideline jc_0011: Optimization parameters for Boolean data
types.

Prerequisite
A prerequisite MAAB guideline for this check is na_0002: Appropriate
implementation of fundamental logical and numerical operations.

Results and Recommended Actions

Condition Recommended Action

Configuration setting for
Implement logic signals as
boolean data (vs. double) is
incorrect.

Select the Implement logic signals
as boolean data (vs. double) check
box in the Configuration Parameters
dialog box Optimization pane.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-115

14 Model Advisor Checks

Check model diagnostic settings
Check the model diagnostics configuration parameter settings.

Description
You should enable the following diagnostics:

Algebraic loop
Minimize algebraic loop
Inf or NaN block output
Duplicate data store names
Unconnected block input ports
Unconnected block output ports
Unconnected line
Unspecified bus object at root Outport block
Mux blocks used to create bus signals
Element name mismatch
Invalid function-call connection

This guideline facilitates

• Workflow

• Code generation

Diagnostics not listed in the Results and Recommended Actions section below
can be set to any value.

See MAAB guideline jc_0021: Model diagnostic settings.

14-116

MathWorks™ Automotive Advisory Board Checks

Results and Recommended Actions

Condition Recommended Action

Algebraic loop is set to none. Set Algebraic loop on the
Diagnostics > Solver pane of the
Configuration Parameters dialog box to error
or warning. Otherwise, Simulink might
attempt to automatically break the algebraic
loops, which can affect execution order of the
blocks.

Minimize algebraic loop is set to none. Set Minimize algebraic loop on the
Diagnostics > Solver pane of the
Configuration Parameters dialog box to
error or warning. Otherwise, Simulink
might attempt to automatically break the
algebraic loops for reference models and atomic
subsystems, which can affect the execution
order for those models or subsystems.

Inf or NaN block output is set to none,
which can result in numerical exceptions in the
generated code.

Set Inf or NaN block output on the
Diagnostics > Data Validity > Signals pane
of the Configuration Parameters dialog box to
error or warning.

Duplicate data store names is set to none,
which can result in nonunique variable naming
in the generated code.

Set Duplicate data store names on the
Diagnostics > Data Validity > Signals
pane of the Configuration Parameters dialog
box to error or warning.

Unconnected block input ports is set to
none, which prevents code generation.

Set Unconnected block input ports on the
Diagnostics > Data Validity > Signals
pane of the Configuration Parameters dialog
box to error or warning.

Unconnected block output ports is set to
none, which can lead to dead code.

Set Unconnected block output ports on
the Diagnostics > Data Validity > Signals
pane of the Configuration Parameters dialog
box to error or warning.

14-117

14 Model Advisor Checks

Condition Recommended Action

Unconnected line is set to none, which
prevents code generation.

Set Unconnected line on the
Diagnostics > Connectivity > Signals
pane of the Configuration Parameters dialog
box to error or warning.

Unspecified bus object at root Outport
block is set to none, which can lead to an
unspecified interface if the model is referenced
from another model.

Set Unspecified bus object
at root Outport block on the
Diagnostics > Connectivity > Buses
pane of the Configuration Parameters dialog
box to error or warning.

Mux blocks used to create bus signals is
set to none, which can lead to an unintended
bus being created in the model.

Set Mux blocks used to create bus signals
on the Diagnostics > Connectivity > Buses
pane of the Configuration Parameters dialog
box to error or warning.

Element name mismatch is set to none,
which can lead to an incorrect interface in the
generated code.

Set Element name mismatch on the
Diagnostics > Connectivity > Buses pane
of the Configuration Parameters dialog box to
error or warning.

Invalid function-call connection is set
to none, which can lead to an error in the
operation of the generated code.

Set Invalid function-call connection on the
Diagnostics > Connectivity > Function
Calls pane of the Configuration Parameters
dialog box to error or warning, since this
condition can lead to an error in the operation
of the generated code.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-118

MathWorks™ Automotive Advisory Board Checks

Check the display attributes of block names
Check the display attributes of block names.

Description
Block names should be displayed when providing descriptive information.
Block names should not be displayed if the block function is known from its
appearance.

This guideline facilitates

• Readability

See MAAB guideline jc_0061: Display of block names.

Results and Recommended Actions

Condition Recommended Action

Block name is not descriptive. These block names should be
modified to be more descriptive or
not be shown.

Block name is not displayed. These block names should be
shown since they appear to have a
descriptive name.

Block name is obvious. These block names should not be
displayed.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-119

14 Model Advisor Checks

Check icon display attributes for port blocks
Check the Icon display setting for Inport and Outport blocks.

Description
The Icon display setting is required.

This guideline facilitates

• Readability

See MAAB guideline jc_0081: Icon display for Port block.

Results and Recommended Actions

Condition Recommended Action

The Icon display setting is
incorrect.

Set the Icon display to Port
number for the specified Inport and
Outport blocks.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-120

MathWorks™ Automotive Advisory Board Checks

Check whether subsystem block names include
invalid characters
Check whether subsystem block names include invalid characters.

Description
The names of all subsystem blocks are required.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jc_0201: Usable characters for Subsystem names.

Results and Recommended Actions

Condition Recommended Action

The subsystem name contains illegal
characters.

Rename the subsystem. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The subsystem name starts with a
number.

Rename the subsystem.

The subsystem name starts with an
underscore ("_").

Rename the subsystem.

The subsystem name ends with an
underscore ("_").

Rename the subsystem.

The subsystem name contains
consecutive underscores.

Rename the subsystem.

The subsystem name has consecutive
underscores.

Rename the subsystem.

The subsystem name has blank
spaces.

Rename the subsystem.

14-121

14 Model Advisor Checks

Tips
Use underscores to separate parts of a subsystem name instead of spaces.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-122

MathWorks™ Automotive Advisory Board Checks

Check whether Inport and Outport block names
include invalid characters
Check whether Inport and Outport block names include invalid characters.

Description
The names of all Inport and Outport blocks are required.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jc_0211: Usable characters for Inport blocks and Outport
blocks.

Results and Recommended Actions

Condition Recommended Action

The block name contains illegal
characters.

Rename the block. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The block name starts with a
number.

Rename the block.

The block name starts with an
underscore ("_").

Rename the block.

The block name ends with an
underscore ("_").

Rename the block.

The block name contains consecutive
underscores.

Rename the block.

The block name has consecutive
underscores.

Rename the block.

The block name has blank spaces. Rename the block.

14-123

14 Model Advisor Checks

Tips
Use underscores to separate parts of a block name instead of spaces.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-124

MathWorks™ Automotive Advisory Board Checks

Check whether signal line names include invalid
characters
Check whether signal line names include invalid characters.

Description
The names of all signal lines are required.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jc_0221: Usable characters for signal line names.

Results and Recommended Actions

Condition Recommended Action

The signal line name contains illegal
characters.

Rename the signal line. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The signal line name starts with a
number.

Rename the signal line.

The signal line name starts with an
underscore ("_").

Rename the signal line.

The signal line name ends with an
underscore ("_").

Rename the signal line.

The signal line name contains
consecutive underscores.

Rename the signal line.

The signal line name has consecutive
underscores.

Rename the signal line.

14-125

14 Model Advisor Checks

Condition Recommended Action

The signal line name has blank
spaces.

Rename the signal line.

The signal line name has control
characters.

Rename the signal line.

Tips
Use underscores to separate parts of a signal line name instead of spaces.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-126

MathWorks™ Automotive Advisory Board Checks

Check whether block names include invalid
characters
Check whether block names include invalid characters.

Description
The names of all blocks are required.

This guideline facilitates

• Readability

• Workflow

• Code generation

This guideline does not apply to subsystem blocks.

See MAAB guideline jc_0231: Usable characters for block names.

Prerequisite
A prerequisite MAAB guideline for this check is jc_0201: Usable characters
for Subsystem names.

Results and Recommended Actions

Condition Recommended Action

The block name contains illegal
characters.

Rename the block. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The block name starts with a
number.

Rename the block.

The block name has blank spaces. Rename the block.

The block name has double byte
characters.

Rename the block.

14-127

14 Model Advisor Checks

Tips
Carriage returns are allowed in block names.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-128

MathWorks™ Automotive Advisory Board Checks

Check Trigger and Enable block port names
Check Trigger and Enable block port names.

Description
Block port names should match the name of the signal triggering the
subsystem.

This guideline facilitates

• Readability

See MAAB guideline jc_0281: Naming of Trigger Port block and Enable Port
block.

Results and Recommended Actions

Condition Recommended Action

Trigger block does not match the
name of the signal to which it is
connected.

Match Trigger block names to the
connecting signal.

Enable block does not match the
name of the signal to which it is
connected.

Match Enable block names to the
connecting signal.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-129

14 Model Advisor Checks

Check for Simulink diagrams that have nonstandard
appearance attributes
Check model appearance setting attributes.

Description
Model appearance settings are required to conform to the guidelines when
the model is released.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline na_0004: Simulink model appearance.

Results and Recommended Actions

Condition Recommended Action

Diagrams do not have white
backgrounds.

Select Format > Screen
Color > Automatic.

Diagrams do not have zoom factor
set to 100%.

Select View > Normal (100%).

The toolbar is not visible. Select View > Toolbar.

The status bar is not visible. Select View > Status Bar.

Block backgrounds are not white. Blocks should have black
foregrounds with white backgrounds.
Click the specified block and
select Format > Foreground
Color > Black and
Format > Background
Color > White.

Wide Nonscalar Lines is cleared. Select Format > Port/Signal
Displays > Wide Nonscalar
Lines.

14-130

MathWorks™ Automotive Advisory Board Checks

Condition Recommended Action

Viewer Indicators is cleared. Select Format > Port/Signal
Displays > Viewer Indicators.

Testpoint Indicators is cleared. Select Format > Port/Signal
Displays > Testpoint Indicators.

Port Data Types is selected. Clear Format > Port/Signal
Displays > Port Data Types.

Storage Class is selected. Clear Format > Port/Signal
Displays > Storage Class.

Signal Dimensions is selected. Clear Format > Port/Signal
Displays > Signal Dimensions.

Model Browser is selected. Clear View > Model Browser
Options > Model Browser.

Sorted Order is selected. Clear Format > Block
Displays > Sorted Order.

Model Block Version is selected. Clear Format > Block
Displays > Model Block Version.

Model Block I/O Mismatch is
selected.

Clear Format > Block
Displays > Model Block I/O
Mismatch.

Execution Context Indicator is
selected.

Clear Format > Block
Displays > Execution Context
Indicator.

Sample Time Colors is selected. Clear Format > Port/Signal
Displays > Sample Time Colors.

Library Link Display is set to
User or All.

Select Format > Library Link
Display > None.

Linearization Indicators is
cleared.

Select Format > Port/Signal
Displays > Linearization
Indicators.

14-131

14 Model Advisor Checks

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-132

MathWorks™ Automotive Advisory Board Checks

Check visibility of port block names
Check the visibility of port block names.

Description
An organization applying the MAAB guidelines must select one of the
following alternatives to enforce:

• The name of port blocks are not hidden.

• The name of port blocks must be hidden.

This guideline facilitates

• Readability

Note This check does not look in masked subsystems.

See MAAB guideline na_0005: Port block name visibility in Simulink models.

Input Parameters

All Port names should be shown (Format/Show Name)
Select this check box if all ports should show the name, including
subsystems.

Results and Recommended Actions

Condition Recommended Action

Blocks do not show their name and
the All Port names should be
shown (Format/Show Name)
check box is selected.

Change the format of the specified
blocks to show names according to
the input requirement.

14-133

14 Model Advisor Checks

Condition Recommended Action

Blocks show their name and the All
Port names should be shown
(Format/Show Name) check box is
cleared.

Change the format of the specified
blocks to hide names according to
the input requirement.

Subsystem blocks do not show their
port names.

Set the subsystem parameter Show
port labels to a value other than
none.

Subsystem blocks show their port
names.

Set the subsystem parameter Show
port labels to none.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-134

MathWorks™ Automotive Advisory Board Checks

Check for direction of subsystem blocks
Check the orientation of subsystem blocks.

Description
Subsystem inputs must be located on the left side of the block, and outputs
must be located on the right side of the block.

This guideline facilitates

• Readability

See MAAB guideline jc_0111: Direction of Subsystem.

Results and Recommended Actions

Condition Recommended Action

Subsystem blocks are not in the
correct orientation.

Change the subsystem blocks to have
the correct orientation, with inports
on the left and outports on the right.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-135

14 Model Advisor Checks

Check for proper position of constants used in
Relational Operator blocks
Check the position of Constant blocks used in Relational Operator blocks.

Description
When the relational operator is used to compare a signal to a constant value,
the constant input should be the second, lower input.

This guideline facilitates

• Readability

• Code generation

See MAAB guideline jc_0131: Use of Relational Operator block.

Results and Recommended Actions

Condition Recommended Action

Relational Operator blocks have a
Constant block on the first, upper
input.

Move the Constant block to the
second, lower input.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-136

MathWorks™ Automotive Advisory Board Checks

Check for entry format in state blocks
Check the format of entries in state blocks.

Description
A new line should be started after the entry, during, and exit action
statements and after the completion of an assignment statement “;”.

This guideline facilitates

• Readability

See MAAB guideline jc_0501: Format of entries in a State block.

Results and Recommended Actions

Condition Recommended Action

An entry in a state block is not
formatted correctly.

Validate that the intended design
is properly represented in the
Stateflow diagram.

An entry action statement is not by
itself.

Add a new line.

Multiple entry action statements
found on one line.

Add a new line between entry action
statements.

An during action statement is not
by itself.

Add a new line.

Multiple during action statements
found on one line.

Add a new line between during
action statements.

An exit action statement is not by
itself.

Add a new line.

Multiple exit action statements
found on one line.

Add a new line between exit action
statements.

14-137

14 Model Advisor Checks

Condition Recommended Action

Multiple action statements found on
one line.

Add a new line between action
statements.

Potential misuse of semicolon (;) on
a line.

Correct the use of the semicolon
where specified.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-138

MathWorks™ Automotive Advisory Board Checks

Check for use of tunable parameters in Stateflow
Check for use of tunable parameters in Stateflow charts.

Description
Include tunable parameters in a Stateflow chart as inputs from the Simulink
model.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline jc_0541: Use of tunable parameters in Stateflow.

Results and Recommended Actions

Condition Recommended Action

Stateflow charts reference Simulink
data objects, which should be used
as inputs from the Simulink model.

Make the Simulink data objects
inputs from the Simulink model to
the specified Stateflow chart.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-139

14 Model Advisor Checks

Check for proper use of Switch blocks
Check for proper use of Switch blocks.

Description
This check verifies that the Switch block’s control input (the second input)
is a Boolean value and that the block is configured to pass the first input
when the control input is nonzero.

This guideline facilitates

• Readability

• Workflow

See MAAB guideline jc_0141: Use of the Switch block.

Results and Recommended Actions

Condition Recommended Action

The Switch block’s control input
(second input) is not a Boolean value.

Change the data type of the control
input to Boolean.

The Switch block is not configured to
pass the first input when the control
input is nonzero.

Set the block parameter Criteria
for passing first input to u2 ~=0.

See Also

• See the description of the Switch block in the Simulink documentation.

• MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-140

MathWorks™ Automotive Advisory Board Checks

Check for proper use of signal buses and Mux block
usage
Check for proper use of signal busses and Mux block usage.

Description
This check verifies whether a model is using signal buses and Mux blocks
properly.

This guideline facilitates

• Readability

• Workflow

See MAAB guidelinena_0010: Grouping data flows into signals.

Results and Recommended Actions

Condition Recommended Action

The individual scalar input signals
for a Mux block do not have
common functionality, data types,
dimensions, and units.

Modify the scalar input signals such
that the specifications match.

The output of a Mux block is not a
vector.

Change the output of the Mux block
to a vector.

All inputs to a Mux block are not
scalars.

Make sure that all input signals to
Mux blocks are scalars.

The input for a Bus Selector block is
not a bus signal.

Make sure that the input for all Bus
Selector blocks is a bus signal.

See Also

• Using Composite Signals in the Simulink documentation.

14-141

14 Model Advisor Checks

• MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-142

MathWorks™ Automotive Advisory Board Checks

Check for mismatches between Stateflow ports and
associated signal names
Check for mismatches between Stateflow ports and associated signal names.

Description
The name of Stateflow input and output should be the same as the
corresponding signal. This guideline is required for:

• Readability

• Workflow

See MAAB guideline db_0123: Stateflow port names.

Results and Recommended Actions

Condition Recommended Action

Signals have names that differ
from those of their corresponding
Stateflow ports.

Change the names of either the
signals or the Stateflow ports.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-143

14 Model Advisor Checks

Check for proper scope of From and Goto blocks
Check the scope of From and Goto blocks.

Description
You can use global scope for controlling flow. However, From and Goto blocks
must use local scope for signal flows.

This guideline facilitates

• Readability

• Workflow

• Code generation

See MAAB guideline na_0011: Scope of Goto and From blocks.

Results and Recommended Actions

Condition Recommended Action

From and Goto blocks are not
configured with local scope.

• Make sure the ports are connected
correctly.

• Change the scope of the specified
blocks to local.

See Also
MathWorks Automotive Advisory Board Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow (Version 2.0) in the
Simulink Verification and Validation reference documentation

14-144

Requirements Consistency Checks

Requirements Consistency Checks

In this section...

“Identify requirement links with missing documents” on page 14-146

“Identify requirement links that specify invalid locations within documents”
on page 14-147

“Identify selection-based links having descriptions that do not match their
requirements document text” on page 14-148

“Identify requirement links with inconsistent path types and preferences”
on page 14-150

14-145

14 Model Advisor Checks

Identify requirement links with missing documents
Ensure that requirements link to existing documents.

Description
You used the Requirements Management Interface (RMI) to associate a
design requirements document with a part of your model design and the
interface cannot find the specified document.

Results and Recommended Actions

Condition Recommended Action

The requirements document
associated with a part of your
model design is not accessible at the
specified location.

Open the Requirements dialog box
and correct the path name of the
requirements document or move the
document to the specified location.

Tips
If your model has links to a DOORS requirements document, to run this
check, the DOORS software must be open and you must be logged in.

See Also

14-146

Requirements Consistency Checks

Identify requirement links that specify invalid
locations within documents
Ensure that requirements link to valid locations (e.g., bookmarks, line
numbers, anchors) within documents.

Description
You used the Requirements Management Interface (RMI) to associate a
location in a design requirements document (a bookmark, line number, or
anchor) with a part of your model design and the interface cannot find the
specified location in the specified document.

Results and Recommended Actions

Condition Recommended Action

The location in the requirements
document associated with a part of
your model design is not accessible.

Open the Requirements dialog box
and correct the location reference
within the requirements document.

Tips
If your model has links to a DOORS requirements document, to run this
check, the DOORS software must be open and you must be logged in.

If your model has links to a Microsoft Word or Microsoft Excel document, to
run this check, those applications must be closed on your computer.

See Also

14-147

14 Model Advisor Checks

Identify selection-based links having descriptions
that do not match their requirements document text
Ensure that descriptions of selection-based links use the same text found in
their requirements documents.

Description
You used selection-based linking of the Requirements Management Interface
(RMI) to label requirements in the model’s Requirements menu with text
that appears in the corresponding requirements document. This check helps
you manage traceability by identifying requirement descriptions in the menu
that are not synchronized with text in the documents.

Results and Recommended Actions

Condition Recommended Action

Selection-based links have
descriptions that differ from
their corresponding selections in the
requirements documents.

If the difference reflects a change in
the requirements document, click
the link in the Model Advisor results
to replace the current description
in the selection-based link with
the text from the requirements
document (the external description).
Alternatively, you can right click
the object in the model window,
select Edit/Add Links from the
Requirements menu, and use
the Requirements dialog box that
appears to synchronize the text.

Tips
If your model has links to a DOORS requirements document, to run this
check, the DOORS software must be open and you must be logged in.

If your model has links to a Microsoft Word or Microsoft Excel document, to
run this check, those applications must be closed on your computer.

14-148

Requirements Consistency Checks

See Also

14-149

14 Model Advisor Checks

Identify requirement links with inconsistent path
types and preferences
Check that requirement paths are of the type selected in the preferences.

Description
You are using the Requirements Management Interface (RMI) and the paths
specifying the location of your requirements documents differ from the file
reference type set as your preference.

Results and Recommended Actions

Condition Recommended Action

The paths indicating the location
of requirements documents use a
file reference type that differs from
the preferences specified in the
Selection-based linking dialog
box.

Change the preferred document file
reference type or the specified paths
by doing one of the following:

• Click Fix to change the current
path to the valid path.

• Update the preference in the
Selection-based linking dialog
box. In the model window, select
Tools > Requirements > Link
settings and change the value for
the Document file reference
option.

See Also

14-150

A

Examples

Use this list to find examples in the documentation.

A Examples

Requirements Management Interface
“Linking from a Simulink Object to a Selected Item in a Requirements
Document” on page 2-7
“Linking from a Simulink Object to a Specified Location in a Requirements
Document” on page 2-9
“Adding Requirement Links to Multiple Objects Simultaneously” on page
2-12
“Linking a Signal Builder Block to a Requirement” on page 2-13
“Viewing Simulink Objects That Have Requirements Links” on page 2-17
“Highlighting Objects with Requirements in the Model Editor” on page 2-17
“Highlighting Objects with Linked Requirements from Model Explorer”
on page 2-18
“Deleting a Single Link from a Simulink Object” on page 2-19
“Deleting All Links from a Simulink Object” on page 2-19
“Deleting Links from Multiple Simulink Objects” on page 2-19
“Creating Requirements in Linked Libraries” on page 2-21
“Creating the Default Requirements Report” on page 2-22
“Customizing a Requirements Report” on page 2-26
“Configuring the RMI to Insert Navigation Controls” on page 2-30
“Enabling ActiveX Controls” on page 2-30
“Creating Navigation Controls in Requirements Documents” on page 2-31
“Troubleshooting Simulink Navigation Controls in Microsoft Office 2007”
on page 2-32
“Creating a Custom Link Requirement Type” on page 2-44
“Using the System Requirements Block in a Model” on page 2-56
“Adding the System Requirements Block” on page 2-56
“Renaming the System Requirements Block” on page 2-57
“Including Requirements Information with Generated Code” on page 2-59

Requirements Management Interface (DOORS Version)
“Creating DOORS Requirements” on page 3-7
“Creating One-Way Links from Simulink Objects to DOORS Requirements”
on page 3-8

A-2

Verification Manager

“Navigating from a Simulink Object to a DOORS Requirement” on page
3-10
“Synchronizing a Simulink Model to Create a Surrogate Module” on page
3-14
“Updating the Surrogate Module to Reflect Model Changes” on page 3-22
“Navigating Using the Surrogate Module” on page 3-25
“Navigating from a Simulink Object to a Requirement” on page 3-26
“Navigating from a Requirement to the Model” on page 3-26
“Viewing Objects with Requirements in the Model Editor” on page 3-28
“Viewing Objects with Requirements in the Model Explorer” on page 3-28
“Creating a Default Requirements Report for a Model” on page 3-30
“Customizing a Requirements Report with Links to DOORS Requirements”
on page 3-31
“Creating Two-Way Links” on page 3-35
“Navigating Two-Way Links” on page 3-36

Verification Manager
“Opening the Verification Manager” on page 4-7
“Enabling and Disabling Model Verification Blocks with the Verification
Manager” on page 4-15
“Using Enabling and Disabling Tools in the Verification Manager” on page
4-20
“Managing Verification Requirements” on page 4-24

Model Coverage
“Details” on page 5-33
“Decisions Analyzed” on page 5-39
“Conditions Analyzed” on page 5-41
“MCDC Analysis” on page 5-41
“N-Dimensional Lookup Table” on page 5-45
“Signal Range Analysis” on page 5-54
“Displaying Model Coverage with Model Coloring” on page 5-70

A-3

A Examples

“Creating a Model with Embedded MATLAB Function Block Decisions”
on page 5-88
“Understanding Embedded MATLAB Function Block Model Coverage”
on page 5-92

Model Advisor Check
“Model Advisor Code Example: Registering Custom Checks and Process
Callbacks” on page 7-7
“Model Advisor Code Example: Check Definition Function” on page 7-15
“Model Advisor Code Example: Input Parameter Definition” on page 7-17
“Model Advisor Code Example: List View Definition” on page 7-19
“Model Advisor Code Example: Action Definition” on page 7-20
“Model Advisor Code Example: Informational Check Callback Function”
on page 7-24
“Model Advisor Code Example: Basic Check with Pass/Fail Status” on
page 7-26
“Model Advisor Code Example: Check With Subchecks and Actions” on
page 7-29
“Model Advisor Code Example: Action Callback Function” on page 7-37
“Model Advisor Code Example: Formatted Output” on page 7-41

Model Advisor Organization
“How To Organize Checks and Folders Using the Model Advisor
Configuration Editor” on page 8-10
“Model Advisor Code Example: Registering Custom Tasks and Folders”
on page 8-15
“Model Advisor Code Example: Task Definition Function” on page 8-17
“Model Advisor Code Example: Group Definition” on page 8-19

A-4

Index

IndexA
Assertion block appearance 4-19

C
categorical lists of functions 10-1 11-1
classes

cv.cvdatagroup 12-15
cv.cvtestgroup 12-17
ModelAdvisor.Action 12-54
ModelAdvisor.Check 12-56
ModelAdvisor.FactoryGroup 12-60
ModelAdvisor.FormatTemplate 12-62
ModelAdvisor.Group 12-70
ModelAdvisor.Image 12-72
ModelAdvisor.InputParameter 12-74
ModelAdvisor.LineBreak 12-77
ModelAdvisor.List 12-79
ModelAdvisor.ListViewParameter 12-81
ModelAdvisor.Paragraph 12-84
ModelAdvisor.Root 12-86
ModelAdvisor.Table 12-88
ModelAdvisor.Task 12-90
ModelAdvisor.Text 12-93

closing Signal Builder Requirements pane 4-13
colored diagram model coverage display 5-69

enabling 5-69
condition coverage

Embedded MATLAB Function blocks 5-102
statements in Embedded MATLAB Function

block 5-88
conditioninfo function 12-11
constructors

cv.cvdatagroup 12-16
cv.cvtestgroup 12-18
ModelAdvisor.Action 12-55
ModelAdvisor.Check 12-59
ModelAdvisor.FactoryGroup 12-61
ModelAdvisor.FormatTemplate 12-69
ModelAdvisor.Group 12-71

ModelAdvisor.Image 12-73
ModelAdvisor.InputParameter 12-75
ModelAdvisor.LineBreak 12-78
ModelAdvisor.List 12-80
ModelAdvisor.ListViewParameter 12-83
ModelAdvisor.Paragraph 12-85
ModelAdvisor.Root 12-87
ModelAdvisor.Table 12-89
ModelAdvisor.Task 12-92
ModelAdvisor.Text 12-94

cv.cvdatagroup class 12-15
cv.cvdatagroup constructor 12-16
cv.cvdatagroup.allNames method 12-9
cv.cvdatagroup.get method 12-41
cv.cvdatagroup.getAll method 12-43
cv.cvdatagroup.name property 12-182
cv.cvtestgroup class 12-17
cv.cvtestgroup constructor 12-18
cv.cvtestgroup.add method 12-2
cv.cvtestgroup.allNames method 12-10
cv.cvtestgroup.get method 12-42
cv.cvtestgroup.name property 12-183
cvexit function 12-19
cvhtml function 12-20

model coverage 5-77
cvload function 12-23

model coverage 5-79
cvmodelview function 12-24
cvsave function 12-26

model coverage 5-78
cvsim function 12-28

model coverage 5-76
cvsimref function 12-31
cvtest function 12-34

model coverage 5-74

D
decision coverage

Embedded MATLAB Function blocks 5-101

Index-1

Index

statements in Embedded MATLAB Function
blocks 5-87

decisioninfo function 12-37
defining Model Advisor checks 7-11
defining Model Advisor folders 8-18
defining Model Advisor tasks 8-15
demos

Model Advisor customization demo 8-20
simcovdemo model coverage demo 5-11

disabling Model Verification blocks across test
groups 4-20

DO-178B
Model Advisor checks 14-5

DOORS
additional installation for 3-4

DOORS Requirements Management Interface
block type descriptions 3-21
definition for object 3-14
from Simulink to DOORS 3-26
hierarchical numbers 3-21
object identifiers 3-21
opening the object in Simulink, Stateflow, or

MATLAB 3-26
overview 3-2
saving formal modules 3-25
synchronizing models with DOORS 3-14
synchronizing objects with DOORS formal

module 3-14
viewing model elements with

requirements 3-28
viewing requirements 3-25

E
Embedded MATLAB Function blocks

condition coverage 5-102
condition coverage statements 5-88
decision coverage 5-101
decision coverage statements 5-87

MCDC coverage 5-102
MCDC coverage statements 5-88
model coverage 5-87
model coverage example 5-88
types of model coverage 5-87

enabling Model Verification blocks across test
groups 4-20

F
functions

categories 10-1 11-1
conditioninfo 12-11
cvexit 12-19
cvhtml 12-20
cvload 12-23
cvmodelview 12-24
cvsave 12-26
cvsim 12-28
cvsimref 12-31
cvtest 12-34
decisioninfo 12-37
getCoverageInfo 12-44
mcdcinfo 12-50
Model Advisor customization API 10-5 11-3
Model Advisor formatting API 10-8 11-5
Model Advisor result template API 10-7 11-4
model coverage 10-3 11-2
rmi 12-98
rmidocrename 12-104
rminav 12-106
sigrangeinfo 12-151
start old Requirements Management

Interface 10-2
tableinfo 12-153

G
getCoverageInfo function 12-44

Index-2

Index

I
icons for Model Verification blocks in Verification

Manager 4-16
IEC 61508

Model Advisor checks 14-62
installing DOORS 3-4

L
Lookup Table block in model coverage report 5-45
Lookup Table model coverage

n-dimensional 5-52
three-dimensional example 5-49
two-dimensional example 5-45

M
MathWorks Automotive Advisory Board

Model Advisor checks 14-79
MCDC coverage

Embedded MATLAB Function blocks 5-102
statements in Embedded MATLAB Function

blocks 5-88
MCDC table

condition cases 5-42
mcdcinfo function 12-50
methods

cv.cvdatagroup.allNames 12-9
cv.cvdatagroup.get 12-41
cv.cvdatagroup.getAll 12-43
cv.cvtestgroup.add 12-2
cv.cvtestgroup.allNames 12-10
cv.cvtestgroup.get 12-42
ModelAdvisor.Action.setCallbackFcn 12-110
ModelAdvisor.Check.getID 12-49
ModelAdvisor.Check.setAction 12-107
ModelAdvisor.Check.setCallbackFcn 12-111
ModelAdvisor.Check.setInputParameters 12-129
ModelAdvisor.Check.setInputParameters-

LayoutGrid 12-130

ModelAdvisor.FactoryGroup.addCheck 12-3
ModelAdvisor.FormatTemplate.addRow 12-7
ModelAdvisor.FormatTemplate.-

setCheckText 12-114
ModelAdvisor.FormatTemplate.-

setColTitles 12-119
ModelAdvisor.FormatTemplate.-

setInformation 12-128
ModelAdvisor.FormatTemplate.-

setListObj 12-132
ModelAdvisor.FormatTemplate.-

setRecAction 12-133
ModelAdvisor.FormatTemplate.-

setRefLink 12-135
ModelAdvisor.FormatTemplate.-

setSubBar 12-141
ModelAdvisor.FormatTemplate.-

setSubResultStatus 12-142
ModelAdvisor.FormatTemplate.-

setSubResultStatusText 12-143
ModelAdvisor.FormatTemplate.-

setSubTitle 12-146
ModelAdvisor.FormatTemplate.-

setTableInfo 12-147
ModelAdvisor.FormatTemplate.-

setTableTitle 12-148
ModelAdvisor.Group.AddGroup 12-4
ModelAdvisor.Group.AddTask 12-8
ModelAdvisor.Image.setHyperlink 12-125
ModelAdvisor.Image.setImageSource 12-127
ModelAdvisor.InputParameter.setColSpan 12-118
ModelAdvisor.InputParameter.setRowSpan 12-140
ModelAdvisor.List.addItem 12-5
ModelAdvisor.List.setType 12-149
ModelAdvisor.Paragraph.addItem 12-6
ModelAdvisor.Paragraph.setAlign 12-108
ModelAdvisor.Root.publish 12-96
ModelAdvisor.Root.register 12-97
ModelAdvisor.Table.getEntry 12-48
ModelAdvisor.Table.setColHeading 12-115

Index-3

Index

ModelAdvisor.Table.setColHeadingAlign 12-116
ModelAdvisor.Table.setColWidth 12-120
ModelAdvisor.Table.setEntry 12-121
ModelAdvisor.Table.setEntryAlign 12-122
ModelAdvisor.Table.setHeading 12-123
ModelAdvisor.Table.setHeadingAlign 12-124
ModelAdvisor.Table.setRowHeading 12-138
ModelAdvisor.Table.setRowHeadingAlign 12-139
ModelAdvisor.Task.setCheck 12-113
ModelAdvisor.Text.setBold 12-109
ModelAdvisor.Text.setColor 12-117
ModelAdvisor.Text.setHyperlink 12-126
ModelAdvisor.Text.setItalic 12-131
ModelAdvisor.Text.setRetainSpace-

Return 12-137
ModelAdvisor.Text.setSubscript 12-144
ModelAdvisor.Text.setSuperscript 12-145
ModelAdvisor.Text.setUnderlined 12-150

model
synchronizing to DOORS surrogate

module 3-12
Model Advisor checks

DO-178B 14-5
IEC 61508 14-62
MathWorks Automotive Advisory

Board 14-79
requirements consistency 14-145

Model Advisor customization API functions 10-5
Model Advisor customization classes 11-3
Model Advisor customizations

creating check callback functions 7-22
defining custom checks 7-11
defining custom folders 8-18
defining custom tasks 8-15
defining process callback functions 7-8
formatting Model Advisor results 7-38
registering custom checks 7-6
registering custom tasks and folders 8-13
slvnvdemo_mdladv demo 8-20
workflow overview 6-4

Model Advisor formatting API functions 10-8
Model Advisor formatting classes 11-5
Model Advisor result template class 10-7 11-4
model coverage

colored Simulink diagram display 5-69
colored Simulink diagram example 5-70
commands in MATLAB 5-74
Conditions analyzed table 5-41
Decisions analyzed table 5-39
Embedded MATLAB Function blocks 5-87
enabling colored diagram display 5-69
enabling colored Simulink diagram

display 5-69
HTML settings 5-24
introduction 5-2
Lookup Table block report 5-45
MCDC table 5-42
n-dimensional Lookup Table 5-52
settings in dialog 5-16
signal range analysis report 5-54
three-dimensional Lookup Table

example 5-49
two-dimensional Lookup Table 5-45
understanding report 5-30
workflow 5-11

model coverage demo
simcovdemo 5-11

model coverage functions 10-3 11-2
cvhtml 5-77
cvload 5-79
cvsave 5-78
cvsim 5-76
cvtest 5-74

Model Verification blocks
block appearance 4-17
disabling for test groups 4-15
enabling for test groups 4-15
icons 4-16
parameter settings 4-3
using individually 4-2

Index-4

Index

ModelAdvisor.Action class 12-54
ModelAdvisor.Action constructor 12-55
ModelAdvisor.Action.Description

property 12-161
ModelAdvisor.Action.Name property 12-184
ModelAdvisor.Action.setCallbackFcn

method 12-110
ModelAdvisor.Check class 12-56
ModelAdvisor.Check constructor 12-59
ModelAdvisor.Check.CallbackContext

property 12-157
ModelAdvisor.Check.CallbackFunction

property 12-158
ModelAdvisor.Check.CallbackStyle

property 12-159
ModelAdvisor.Check.Enable property 12-169
ModelAdvisor.Check.getID method 12-49
ModelAdvisor.Check.ID property 12-172
ModelAdvisor.Check.LicenseName

property 12-176
ModelAdvisor.Check.ListViewVisible

property 12-178
ModelAdvisor.Check.Result property 12-187
ModelAdvisor.Check.setAction

method 12-107
ModelAdvisor.Check.setCallbackFcn

method 12-111
ModelAdvisor.Check.setInputParameters

method 12-129
ModelAdvisor.Check.setInputParameters-

LayoutGrid method 12-130
ModelAdvisor.Check.Title property 12-188
ModelAdvisor.Check.TitleTips

property 12-189
ModelAdvisor.Check.Value property 12-192
ModelAdvisor.Check.Visible property 12-195
ModelAdvisor.FactoryGroup class 12-60
ModelAdvisor.FactoryGroup constructor 12-61
ModelAdvisor.FactoryGroup.addCheck

method 12-3

ModelAdvisor.FactoryGroup.Description
property 12-162

ModelAdvisor.FactoryGroup.DisplayName
property 12-166

ModelAdvisor.FactoryGroup.ID
property 12-173

ModelAdvisor.FactoryGroup.MAObj
property 12-179

ModelAdvisor.FormatTemplate class 12-62
ModelAdvisor.FormatTemplate

constructor 12-69
ModelAdvisor.FormatTemplate.addRow

method 12-7
ModelAdvisor.FormatTemplate.setCheckText

method 12-114
ModelAdvisor.FormatTemplate.setColTitles

method 12-119
ModelAdvisor.FormatTemplate.setInformation

method 12-128
ModelAdvisor.FormatTemplate.setListObj

method 12-132
ModelAdvisor.FormatTemplate.setRecAction

method 12-133
ModelAdvisor.FormatTemplate.setRefLink

method 12-135
ModelAdvisor.FormatTemplate.setSubBar

method 12-141
ModelAdvisor.FormatTemplate.-

setSubResultStatus method 12-142
ModelAdvisor.FormatTemplate.-

setSubResultStatusText method 12-143
ModelAdvisor.FormatTemplate.setSubTitle

method 12-146
ModelAdvisor.FormatTemplate.setTableInfo

method 12-147
ModelAdvisor.FormatTemplate.setTableTitle

method 12-148
ModelAdvisor.Group class 12-70
ModelAdvisor.Group constructor 12-71
ModelAdvisor.Group.AddGroup method 12-4

Index-5

Index

ModelAdvisor.Group.AddTask method 12-8
ModelAdvisor.Group.Description

property 12-163
ModelAdvisor.Group.DisplayName

property 12-167
ModelAdvisor.Group.ID property 12-174
ModelAdvisor.Group.MAObj property 12-180
ModelAdvisor.Image class 12-72
ModelAdvisor.Image constructor 12-73
ModelAdvisor.Image.setHyperlink

method 12-125
ModelAdvisor.Image.setImageSource

method 12-127
ModelAdvisor.InputParameter class 12-74
ModelAdvisor.InputParameter

constructor 12-75
ModelAdvisor.InputParameter.Description

property 12-164
ModelAdvisor.InputParameter.Entries

property 12-171
ModelAdvisor.InputParameter.Name

property 12-185
ModelAdvisor.InputParameter.setColSpan

method 12-118
ModelAdvisor.InputParameter.setRowSpan

method 12-140
ModelAdvisor.InputParameter.Type

property 12-190
ModelAdvisor.InputParameter.Value

property 12-193
ModelAdvisor.LineBreak class 12-77
ModelAdvisor.LineBreak constructor 12-78
ModelAdvisor.List class 12-79
ModelAdvisor.List constructor 12-80
ModelAdvisor.List.addItem method 12-5
ModelAdvisor.List.setType method 12-149
ModelAdvisor.ListViewParameter class 12-81
ModelAdvisor.ListViewParameter

constructor 12-83

ModelAdvisor.ListViewParameter.Attributes
property 12-156

ModelAdvisor.ListViewParameter.Data
property 12-160

ModelAdvisor.ListViewParameter.Name
property 12-186

ModelAdvisor.Paragraph class 12-84
ModelAdvisor.Paragraph constructor 12-85
ModelAdvisor.Paragraph.addItem

method 12-6
ModelAdvisor.Paragraph.setAlign

method 12-108
ModelAdvisor.Root class 12-86
ModelAdvisor.Root constructor 12-87
ModelAdvisor.Root.publish method 12-96
ModelAdvisor.Root.register method 12-97
ModelAdvisor.Table class 12-88
ModelAdvisor.Table constructor 12-89
ModelAdvisor.Table.getEntry method 12-48
ModelAdvisor.Table.setColHeading

method 12-115
ModelAdvisor.Table.setColHeadingAlign

method 12-116
ModelAdvisor.Table.setColWidth

method 12-120
ModelAdvisor.Table.setEntry method 12-121
ModelAdvisor.Table.setEntryAlign

method 12-122
ModelAdvisor.Table.setHeading

method 12-123
ModelAdvisor.Table.setHeadingAlign

method 12-124
ModelAdvisor.Table.setRowHeading

method 12-138
ModelAdvisor.Table.setRowHeadingAlign

method 12-139
ModelAdvisor.Task class 12-90
ModelAdvisor.Task constructor 12-92
ModelAdvisor.Task.Description

property 12-165

Index-6

Index

ModelAdvisor.Task.DisplayName
property 12-168

ModelAdvisor.Task.Enable property 12-170
ModelAdvisor.Task.ID property 12-175
ModelAdvisor.Task.LicenseName

property 12-177
ModelAdvisor.Task.MAObj property 12-181
ModelAdvisor.Task.setCheck method 12-113
ModelAdvisor.Task.Value property 12-194
ModelAdvisor.Task.Visible property 12-196
ModelAdvisor.Text class 12-93
ModelAdvisor.Text constructor 12-94
ModelAdvisor.Text.setBold method 12-109
ModelAdvisor.Text.setColor method 12-117
ModelAdvisor.Text.setHyperlink

method 12-126
ModelAdvisor.Text.setItalic method 12-131
ModelAdvisor.Text.setRetainSpaceReturn

method 12-137
ModelAdvisor.Text.setSubscript

method 12-144
ModelAdvisor.Text.setSuperscript

method 12-145
ModelAdvisor.Text.setUnderlined

method 12-150
models

running test cases 5-11

O
objects

viewing objects with requirements 2-17
old Requirements Management Interface 10-2
opening a Signal Builder block 4-9
operating system requirements 1-3

P
parameters for Model Verification blocks 4-3
properties

cv.cvdatagroup.name 12-182
cv.cvtestgroup.name 12-183
ModelAdvisor.Action.Description 12-161
ModelAdvisor.Action.Name 12-184
ModelAdvisor.Check.CallbackContext 12-157
ModelAdvisor.Check.CallbackFunction 12-158
ModelAdvisor.Check.CallbackStyle 12-159
ModelAdvisor.Check.Enable 12-169
ModelAdvisor.Check.ID 12-172
ModelAdvisor.Check.LicenseName 12-176
ModelAdvisor.Check.ListViewVisible 12-178
ModelAdvisor.Check.Result 12-187
ModelAdvisor.Check.Title 12-188
ModelAdvisor.Check.TitleTips 12-189
ModelAdvisor.Check.Value 12-192
ModelAdvisor.Check.Visible 12-195
ModelAdvisor.FactoryGroup.Description 12-162
ModelAdvisor.FactoryGroup.DisplayName 12-166
ModelAdvisor.FactoryGroup.ID 12-173
ModelAdvisor.FactoryGroup.MAObj 12-179
ModelAdvisor.Group.Description 12-163
ModelAdvisor.Group.DisplayName 12-167
ModelAdvisor.Group.ID 12-174
ModelAdvisor.Group.MAObj 12-180
ModelAdvisor.InputParameter.-

Description 12-164
ModelAdvisor.InputParameter.Entries 12-171
ModelAdvisor.InputParameter.Name 12-185
ModelAdvisor.InputParameter.Type 12-190
ModelAdvisor.InputParameter.Value 12-193
ModelAdvisor.ListViewParameter.-

Attributes 12-156
ModelAdvisor.ListViewParameter.Data 12-160
ModelAdvisor.ListViewParameter.Name 12-186
ModelAdvisor.Task.Description 12-165
ModelAdvisor.Task.DisplayName 12-168
ModelAdvisor.Task.Enable 12-170
ModelAdvisor.Task.ID 12-175
ModelAdvisor.Task.LicenseName 12-177
ModelAdvisor.Task.MAObj 12-181

Index-7

Index

ModelAdvisor.Task.Value 12-194
ModelAdvisor.Task.Visible 12-196

R
report

model coverage HTML options 5-24
understanding model coverage report 5-30

requirements
adding to test groups 4-25
for Model Verification block settings 4-24
for Requirements Management Interface for

DOORS 3-2
in generated code 2-59
viewing for test groups 4-27
viewing objects with 2-17

requirements consistency
Model Advisor checks 14-145

requirements links
two-way

creating 3-35
navigating 3-36

Requirements Management Interface
overview 2-2

Requirements Management Interface for DOORS
block type descriptions 3-21
definition of object in DOORS 3-14
from Simulink to DOORS 3-26
hierarchical numbers 3-21
object identifiers 3-21
opening the object in Simulink or

Stateflow 3-26
overview 3-2
saving formal modules 3-25
synchronizing models with DOORS 3-14
synchronizing objects with DOORS formal

module 3-14
viewing model elements with

requirements 3-28

viewing requirements 3-25
Requirements pane for Verification

Manager 4-24
requirements reports

content 3-30
creating default 3-30
customizing 2-26 3-31

rmi function 12-98
rmidocrename function 12-104
rminav function 12-106

S
Signal Builder block

opening 4-9
Signal Builder dialog box

closing Verification Manager Requirements
pane 4-13

signal range analysis report in model
coverage 5-54

sigrangeinfo function 12-151
simcovdemo

model coverage demo 5-11
slvnvdemo_mdladv

Model Advisor customization demo 8-20
surrogate modules 3-12
synchronization

customizing level of detail 3-19
Simulink model to DOORS surrogate

module 3-12
synchronizing models with DOORS 3-14
system requirements 1-3

IBM Rational DOORS 1-3
MATLAB 1-3
Microsoft Excel 1-3
Microsoft Word 1-3
operating system 1-3
Simulink 1-3
Stateflow 1-3

Index-8

Index

T
tableinfo function 12-153
test case commands 5-11
test groups

adding requirements 4-25
disabling Model Verification blocks 4-15
enabling Model Verification blocks 4-15
Model Verification blocks enabled

across 4-20

V
verification blocks

example of use 4-2
icons 4-16

requirements for test groups 4-24
stopping simulation 4-4

Verification Manager
closing Requirements pane 4-13
disabling Model Verification blocks for test

groups 4-15
enabled/disabled block appearance 4-17
enabling Model Verification blocks for test

groups 4-15
flat display 4-15
hierarchical display 4-15
icons for Model Verification blocks 4-16
opening 4-7
Requirements pane 4-24

viewing objects with requirements 2-17

Index-9

	toc
	Getting Started
	Product Overview
	System Requirements
	Operating System Requirements
	Product Requirements

	Organization of This User’s Guide

	Managing Model Requirements
	About the Requirements Management Interface
	About Requirements Documents
	Requirements Document Types
	Locations Within Requirements Documents

	Linking a Simulink Object to a Location in a Requirements Docume
	What Is Selection-Based Linking?
	Creating a Requirements Document in Microsoft Word
	Linking from a Simulink Object to a Selected Item in a Requireme
	Customizing Selection-Based Linking
	Linking from a Simulink Object to a Specified Location in a Requ
	Creating a Requirements Document in a Microsoft Excel Spreadshee
	Adding Requirement Links to Multiple Objects Simultaneously
	Linking a Signal Builder Block to a Requirement
	Resolving the Document Path
	Relative (Partial) Path Example
	Relative (No) Path Example
	Absolute Path Example

	Viewing Simulink Objects That Have Requirements Links
	Highlighting Objects with Requirements in the Model Editor
	Highlighting Objects with Linked Requirements from Model Explore

	Deleting Requirement Links from Simulink Objects
	Deleting a Single Link from a Simulink Object
	Deleting All Links from a Simulink Object
	Deleting Links from Multiple Simulink Objects

	Creating Requirements in Linked Libraries
	Creating a Requirements Report
	Creating the Default Requirements Report
	Table of Contents / List of Tables
	Model Information
	Documents Information
	System
	Systems and subsystems with no requirements

	Customizing a Requirements Report
	Customizing the Report Using the RMI
	Customizing the Report Using the Simulink Report Generator Softw

	Navigating from Requirements Documents to Simulink Objects
	Configuring the RMI to Insert Navigation Controls
	Enabling ActiveX Controls
	Creating Navigation Controls in Requirements Documents
	Troubleshooting Simulink Navigation Controls in Microsoft Office
	Saving Requirements Documents to Microsoft Word 2007 Format
	Field Codes in Requirements Document
	ActiveX Control Does Not Link to Model Element
	Deleting an ActiveX Control from Microsoft Excel 2007 file

	Linking to Custom Types of Requirements Documents
	Built-In Link Types
	Why Create a Custom Link Type?
	Custom Link Type Registration
	Link Properties
	Link Type Properties
	Creating a Custom Link Requirement Type
	Creating a Document Index

	Navigating to Simulink Objects from External Documents
	Providing Unique Object Identifiers
	Using the rmiobjnavigate Function
	Determining the Navigation Command
	Using the ActiveX Navigation Control
	Typical Code Sequence for Establishing Navigation Controls

	Using the System Requirements Block in a Model
	About the System Requirements Block
	Adding the System Requirements Block
	Renaming the System Requirements Block

	Including Requirements Information with Generated Code

	Managing Requirements with DOORS Software
	Why Use DOORS Requirements with Simulink Objects?
	Configuring the Requirements Management Interface for DOORS Soft
	Before You Begin
	Installing DOORS Software
	Manually Installing Additional Files for DOORS Software
	Upgrading DOORS Software

	Linking Simulink Objects to DOORS Requirements
	Creating DOORS Requirements
	Creating One-Way Links from Simulink Objects to DOORS Requiremen
	DOORS IDs

	Navigating from a Simulink Object to a DOORS Requirement

	Synchronizing a Simulink Model to a DOORS Surrogate Module
	What Is a Surrogate Module?
	What Is Synchronization?
	Advantages of Synchronization
	Synchronizing a Simulink Model to Create a Surrogate Module
	Customizing the Synchronization
	DOORS Synchronization Settings
	Resynchronizing a Model with a Different Surrogate Module
	Customizing the Level of Detail in Synchronization
	Resynchronizing to Include All Simulink Objects
	Detailed Information About Surrogate Modules

	Updating the Surrogate Module to Reflect Model Changes
	Navigating Using the Surrogate Module
	Navigating Between Requirements and the Surrogate Module in the
	Two-Way Navigation Using the Surrogate Module

	Viewing Simulink Objects with Requirements
	Viewing Objects with Requirements in the Model Editor
	Viewing Objects with Requirements in the Model Explorer

	Creating Requirements Reports
	About Requirements Reports
	Creating a Default Requirements Report for a Model
	Customizing a Requirements Report with Links to DOORS Requiremen
	Customizing the Report Using the RMI
	Customizing the Report Using the Simulink Report Generator Softw

	Creating Two-Way Links Between Requirements and Simulink Objects
	Creating Two-Way Links
	Navigating Two-Way Links

	Managing Model Verification Blocks
	Using Model Verification Blocks
	Using the Verification Manager
	What Is the Verification Manager?
	Opening the Verification Manager
	Enabling and Disabling Model Verification Blocks with the Verifi
	Using Enabling and Disabling Tools in the Verification Manager

	Managing Verification Requirements

	Using Model Coverage
	Introduction to Model Coverage
	What Is Model Coverage?
	How Model Coverage Works
	Simulink Optimizations and Model Coverage
	Block reduction
	Conditional input branch execution

	Types of Model Coverage
	Cyclomatic Complexity
	Decision Coverage (DC)
	Condition Coverage (CC)
	Modified Condition/Decision Coverage (MCDC)
	Lookup Table Coverage
	Signal Range Coverage
	Signal Size Coverage
	Simulink Design Verifier Coverage

	Blocks That Receive Model Coverage

	Analyzing Model Coverage
	Model Coverage Analysis Workflow
	Creating and Running Test Cases

	Model Coverage Reporting Options
	Coverage Settings Dialog Box
	Coverage Tab
	Coverage for this model
	Select Subsystem
	Coverage for referenced models
	Select Models
	Coverage for External Embedded MATLAB Files
	Coverage metrics

	Results Tab
	Save Cumulative Results in Workspace Variable
	Save Last Run in Workspace Variable
	Increment Variable Name with Each Simulation
	Update Results on Pause
	Display Coverage Results Using Model Coloring

	Report Tab
	Generate HTML Report
	Settings
	Cumulative Runs
	Last run
	Additional data to include in report

	Options Tab
	Treat Simulink Logic blocks as short-circuited
	Warn when unsupported blocks exist in model
	Force block reduction off

	Understanding Model Coverage Reports
	Types of Coverage Reports
	Model Coverage Reports
	Coverage Summary
	Details
	Cyclomatic Complexity
	Decisions Analyzed
	Conditions Analyzed
	MCDC Analysis
	Cumulative Coverage
	N-Dimensional Lookup Table
	Block Reduction
	Signal Range Analysis
	Signal Size Coverage for Variable-Dimension Signals
	Simulink Design Verifier Block Coverage

	Model Summary Reports
	Model Reference Coverage Reports
	External M-File Coverage Reports
	Subsystem Coverage Reports

	Colored Simulink Diagram Coverage Display
	How Model Coverage Highlighting Works
	Enabling the Colored Diagram Display
	Displaying Model Coverage with Model Coloring
	Accessing Coverage Information for Colored Blocks

	Using Model Coverage Commands
	About Model Coverage Commands
	Creating Tests with cvtest
	Running Tests with cvsim
	Producing HTML Reports with cvhtml
	Saving Test Runs to a File with cvsave
	Loading Stored Coverage Test Results with cvload
	cvload Special Considerations

	Coverage Script Example

	Using Model Coverage Commands for Referenced Models
	Introduction
	Creating a Test Group with cv.cvtestgroup
	Running Tests with cvsimref
	Extracting Results from cv.cvdatagroup

	Model Coverage for Embedded MATLAB Function Blocks
	Types of Model Coverage in Embedded MATLAB Function Blocks
	Creating a Model with Embedded MATLAB Function Block Decisions
	Understanding Embedded MATLAB Function Block Model Coverage
	Model Coverage for the Embedded MATLAB Function Block Function r
	Model Coverage for the Embedded MATLAB Function Block and the Mo

	Customizing the Model Advisor
	Overview of the Model Advisor
	Why Use and Customize the Model Advisor?
	About the Model Advisor
	Customizing the Model Advisor

	Customizing and Using the Model Advisor Workflow
	Before Customizing the Model Advisor

	Authoring Custom Checks
	Authoring Checks Workflow
	Customization File Overview
	Register Checks and Process Callbacks
	Create sl_customization Function
	Registering Checks and Process Callbacks
	Model Advisor Code Example: Registering Custom Checks and Proces

	Defining Startup and Post-Execution Actions Using Process Callba
	Process Callback Function Arguments
	Model Advisor Code Example: Process Callback Function

	Defining Custom Checks
	About Custom Checks
	Contents of Check Definitions
	Displaying and Enabling Checks
	Defining Where Custom Checks Appear
	Model Advisor Code Example: Check Definition Function
	Defining Check Input Parameters
	Specifying Input Parameter Layout
	Model Advisor Code Example: Input Parameter Definition

	Defining Model Advisor Result Explorer Views
	Model Advisor Code Example: List View Definition

	Defining Check Actions
	Model Advisor Code Example: Action Definition

	Creating Callback Functions and Results
	About Callback Functions
	Common Utilities for Authoring Checks
	Simple Check Callback Function
	Model Advisor Code Example: Informational Check Callback Functio
	Model Advisor Code Example: Basic Check with Pass/Fail Status
	Model Advisor Code Example: Check With Subchecks and Actions

	Detailed Check Callback Function
	Check Callback Function with Hyperlinked Results
	Action Callback Function
	Model Advisor Code Example: Action Callback Function

	Formatting Model Advisor Results
	Overview of Displaying Results
	Formatting Model Advisor Results
	Formatting Text
	Formatting Lists
	Formatting Tables
	Formatting Paragraphs
	Model Advisor Code Example: Formatted Output

	Creating Custom Configurations by Organizing Checks and Folders
	Overview of Creating Custom Configurations
	About Creating Custom Configurations
	Creating Custom Configurations Workflow
	Using the Model Advisor Configuration Editor Versus Customizatio

	Organizing Checks and Folders Using the Model Advisor Configurat
	Overview of the Model Advisor Configuration Editor
	Starting the Model Advisor Configuration Editor
	How To Organize Checks and Folders Using the Model Advisor Confi

	Organizing Checks and Folders Within a Customization File
	Customization File Overview
	Register Tasks and Folders
	Create sl_customization Function
	Registering Tasks and Folders

	Defining Custom Tasks
	Adding a Check to Custom or Multiple Folders Using Tasks
	Creating Custom Tasks Using MathWorks Checks
	Displaying and Enabling Tasks
	Defining Where Tasks Appear
	Model Advisor Code Example: Task Definition Function

	Defining Custom Folders
	About Custom Folders
	Adding Custom Folders
	Defining Where Custom Folders Appear
	Model Advisor Code Example: Group Definition

	Demo and Code Example

	Verifying and Using Custom Configurations
	Updating the Environment to Include Your sl_customization File
	Verifying Custom Configurations

	Deploying Custom Configurations
	Overview of Deploying Custom Configurations
	About Deploying Custom Configurations
	Deploying Custom Configurations Workflow

	How to Deploy Custom Configurations
	Loading and Setting the Default Configuration

	Function Reference
	Requirements Management Interface
	Model Coverage
	Model Advisor Customization API
	Model Advisor Result Template API
	Model Advisor Formatting API

	Class Reference
	Model Coverage
	Model Advisor Customization API
	Model Advisor Result Template API
	Model Advisor Formatting API

	Alphabetical List
	Block Reference
	Model Advisor Checks
	Simulink Verification and Validation Checks
	Simulink Verification and Validation Checks Overview
	See Also

	Modeling Standards Checks Overview
	See Also

	DO-178B Checks
	DO-178B Checks Overview
	See Also

	Check safety-related optimization settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for solvers
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for sample time
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for signal data
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for parameters
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for data used for debug
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for data store memory
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for type conversions
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for signal connectivity
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for bus connectivity
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings that apply to function-
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for compatibility
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for model initializatio
	Description
	Analysis Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for model referencing
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related model referencing settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related code generation settings
	Description
	Results and Recommended Actions
	Action Results
	Limitations
	See Also

	Check safety-related diagnostic settings for saving
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check for model objects that do not link to requirements
	Description
	Analysis Results and Recommended Actions
	Limitations
	Tip
	See Also

	Check for proper usage of Math blocks
	Description
	Analysis Results and Recommended Actions
	Tips
	See Also

	Check for proper usage of For Iterator blocks
	Description
	Results and Recommended Actions
	See Also

	Check for proper usage of While Iterator blocks
	Description
	Results and Recommended Actions
	See Also

	Display model version information
	Description
	Results and Recommended Actions
	See Also

	Check for proper usage of blocks that compute absolute values
	Description
	Results and Recommended Actions
	See Also

	Check for proper usage of Relational Operator blocks
	Description
	Results and Recommended Actions
	See Also

	IEC 61508 Checks
	IEC 61508 Checks Overview
	Tips
	See Also

	Display model metrics and complexity report
	Description
	Results and Recommended Actions
	See Also

	Check for unconnected objects
	Description
	Results and Recommended Actions
	See Also

	Check for fully defined interface
	Description
	Results and Recommended Actions
	Tips
	See Also

	Check for questionable constructs
	Description
	Results and Recommended Actions
	Limitation
	See Also

	Check usage of Stateflow constructs
	Description
	Results and Recommended Actions
	See Also

	Check for model objects that do not link to requirements
	Description
	Analysis Results and Recommended Actions
	Limitations
	Tip
	See Also

	Display configuration management data
	Description
	Results and Recommended Actions
	See Also

	Check usage of Simulink constructs
	Description
	Results and Recommended Actions
	See Also

	MathWorks Automotive Advisory Board Checks
	MathWorks Automotive Advisory Board Checks Overview
	See Also

	Check for difference in font and font sizes
	Description
	Input Parameters
	Results and Recommended Actions
	Action Results
	See Also

	Check transition orientations in flow charts
	Description
	Results and Recommended Actions
	See Also

	Check for display of nondefault block attributes
	Description
	Results and Recommended Actions
	See Also

	Check for proper labeling on signal lines
	Description
	Results and Recommended Actions
	See Also

	Check for propagated labels on signal lines
	Description
	Results and Recommended Actions
	See Also

	Check default transition placement in Stateflow charts
	Description
	Results and Recommended Actions
	See Also

	Check setting Stateflow graphical function return value
	Description
	Results and Recommended Actions
	See Also

	Check for blocks not using one-based indexing
	Description
	Results and Recommended Actions
	See Also

	Check for invalid file names
	Description
	Results and Recommended Actions
	See Also

	Check for invalid model directory names
	Description
	Results and Recommended Actions
	See Also

	Check for blocks that are not discrete
	Description
	Results and Recommended Actions
	See Also

	Check for prohibited sink blocks
	Description
	Results and Recommended Actions
	See Also

	Check for invalid port positioning and configuration
	Description
	Results and Recommended Actions
	See Also

	Check for mismatches between names of ports and corresponding si
	Description
	Prerequisite
	Results and Recommended Actions
	See Also

	Check whether block names do not appear below blocks
	Description
	Results and Recommended Actions
	See Also

	Check for systems that mix primitive blocks and subsystems
	Description
	Results and Recommended Actions
	See Also

	Check whether model has unconnected block input ports, output po
	Description
	Results and Recommended Actions
	See Also

	Check for improperly positioned Trigger and Enable blocks
	Description
	Results and Recommended Actions
	See Also

	Check whether annotations have drop shadows
	Description
	Results and Recommended Actions
	See Also

	Check whether tunable parameters specify expressions, data type
	Description
	Results and Recommended Actions
	See Also

	Check whether Stateflow events are defined at the chart level or
	Description
	Results and Recommended Actions
	See Also

	Check whether Stateflow data objects with local scope are define
	Description
	Results and Recommended Actions
	See Also

	Check interface signals and parameters
	Description
	Results and Recommended Actions
	See Also

	Check for exclusive states, default states, and substate validit
	Description
	Prerequisite
	Results and Recommended Actions
	See Also

	Check optimization parameters for Boolean data types
	Description
	Prerequisite
	Results and Recommended Actions
	See Also

	Check model diagnostic settings
	Description
	Results and Recommended Actions
	See Also

	Check the display attributes of block names
	Description
	Results and Recommended Actions
	See Also

	Check icon display attributes for port blocks
	Description
	Results and Recommended Actions
	See Also

	Check whether subsystem block names include invalid characters
	Description
	Results and Recommended Actions
	Tips
	See Also

	Check whether Inport and Outport block names include invalid cha
	Description
	Results and Recommended Actions
	Tips
	See Also

	Check whether signal line names include invalid characters
	Description
	Results and Recommended Actions
	Tips
	See Also

	Check whether block names include invalid characters
	Description
	Prerequisite
	Results and Recommended Actions
	Tips
	See Also

	Check Trigger and Enable block port names
	Description
	Results and Recommended Actions
	See Also

	Check for Simulink diagrams that have nonstandard appearance att
	Description
	Results and Recommended Actions
	See Also

	Check visibility of port block names
	Description
	Input Parameters
	Results and Recommended Actions
	See Also

	Check for direction of subsystem blocks
	Description
	Results and Recommended Actions
	See Also

	Check for proper position of constants used in Relational Operat
	Description
	Results and Recommended Actions
	See Also

	Check for entry format in state blocks
	Description
	Results and Recommended Actions
	See Also

	Check for use of tunable parameters in Stateflow
	Description
	Results and Recommended Actions
	See Also

	Check for proper use of Switch blocks
	Description
	Results and Recommended Actions
	See Also

	Check for proper use of signal buses and Mux block usage
	Description
	Results and Recommended Actions
	See Also

	Check for mismatches between Stateflow ports and associated sign
	Description
	Results and Recommended Actions
	See Also

	Check for proper scope of From and Goto blocks
	Description
	Results and Recommended Actions
	See Also

	Requirements Consistency Checks
	Identify requirement links with missing documents
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify requirement links that specify invalid locations within
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify selection-based links having descriptions that do not m
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify requirement links with inconsistent path types and pref
	Description
	Results and Recommended Actions
	See Also

	Examples
	Requirements Management Interface
	Requirements Management Interface (DOORS Version)
	Verification Manager
	Model Coverage
	Model Advisor Check
	Model Advisor Organization

	Index

